Challenges in sewage treatment and reuse opportunities in arid regions

Peter Werner
UAEU - National Water Centre. Al Ain
أَوَلَمْ يَرَ الَّذِينَ كَفَرُوا أَنَّ السَّمَاءَاتِ وَاﻷَرْضَ كَانَتَا رَتْقًا فَفَتَقَنَاهُمْ وَجَعَلْنَاهَا عَلَى مَاءٍ كُلِّ شَيْءٍ حَيٍّ أَفَلَا يُؤْمِنُونَ
Sewage treatment must be part of Integrated Water Resources Management (IWRM)
WATER RESOURCES

Groundwater Reservoirs Oceans

Treatment → Water Supply

Sewage Treatment

Treated Sewage

Fate ?

Discharge of non-treated sewage
Criteria for compounds hazardous to waters (teratogen, mutagenic, toxic)

Non-removable by:

- Biodegradation
- Filtration
- Flocculation
- Sedimentation
- Oxidation
- Reduction
Antibiotics, Pain Releasing Compounds, Endocrine Disruptors

Treated Sewage : 0.1 mg/l range

Sludge : 250 mg/kg DW range

Oxygenizers in Fuels: MTBE/ ETBE
None of the current sewage treatment technologies are able to remove those hazardous compounds sufficiently!

Research Required!

- Advanced Oxidation (?)
FATE OF TREATED SEWAGE

- Irrigation
- Release to the environment (Sea, Wadis, etc.)
- Reuse (?)
Groundwater
Groundwater is a treasure and protection, depletion and prevention of pollution must have highest priority!!!
Groundwater depletion by overexploitation

- Shrinking Groundwater Bodies
- Land Subsidize
- Sinking Groundwater Levels
Groundwater Recharge in Areas of Groundwater Depletion
Requirements

Data acquisition

Lab-scale experiments

Modeling, feasibility

Pilot scale

Long term action!
Data Acquisition
SAT

SAT: Soil Acquifer Treatment (Process)

AGR: Artificial Groundwater Recharge for Treated Wastewater (Action)

The Subsurface is a Reactor Based on Natural Attenuation
Natural Attenuation

Naturally occurring processes in soil and groundwater environments that act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in those media.

These in-situ processes include biodegradation, dispersion, dilution, adsorption, volatilization, and abiotic transformation of contaminants.
Fate of Pollutants in the Subsurface

Valid for oil spills
Monitored Natural Attenuation (MNA)

The naturally occurring elimination processes are monitored by a process related analytical programme.

Enhanced Natural Attenuation (ENA)

The naturally occurring elimination processes are supported by enhancing the process or eliminating limiting factors.
Purpose of AGR and SAT

- Replenishment of groundwater resources in depleted aquifers
- Water storage for counter-balancing the negative seasonal effects
- Control of land subsidence
- Control of salt water intrusion in coastal areas

Part of wastewater management
Demands and Reasons to Act

Land subsidence

Example: Giam Lam station (Long Bien), monitoring between Jan 03 – Dec 06
Fast Growing Cities

e.g. Dubai, Abu Dhabi, Muscat and many others
Population in Millions

<table>
<thead>
<tr>
<th>Cities</th>
<th>1960</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi</td>
<td>2.3</td>
<td>25.0</td>
</tr>
<tr>
<td>Lagos</td>
<td>0.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Kiushasa</td>
<td>0.4</td>
<td>11.1</td>
</tr>
<tr>
<td>Lima</td>
<td>1.2</td>
<td>9.7</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>0.008</td>
<td>10.7</td>
</tr>
<tr>
<td>Dhaka</td>
<td>0.5</td>
<td>17.0</td>
</tr>
<tr>
<td>Sao Paulo</td>
<td>4.0</td>
<td>20.8</td>
</tr>
<tr>
<td>Paris</td>
<td>7.4</td>
<td>10.8</td>
</tr>
<tr>
<td>Berlin</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>Johannesburg</td>
<td>2.1</td>
<td>9.2</td>
</tr>
<tr>
<td>Hanoi</td>
<td>0.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Ref. UN World Urbanization Prospects, the 2014 Revision.
General Approach for Recharge

Limiting factors
- Time frame
- Costs (investment, maintenance)
- Location (centralized, decentralized)

Boundary conditions
- Climate
- Soil characteristics
- Groundwater level and quality
- Wastewater properties
- Saturation level
- Seasonal and daily fluctuations

Process parameters
- Flow + temporal evolution
- Water quality
- Aerobic, anaerobic conditions
- Saturated, unsaturated
- Temporal evolution of bio-film
- Steady/continuous flow

Process understanding
- Transport
- Clean-up

- Subsurface treatment of waste water effluent is controlled by the boundary conditions
- Identification of the limitations of waste water infiltration (quantity and quality)
- Identification of treatable contaminants by soil-aquifer treatment method

Lab scale → Pilot scale
Components of AGR Schemes

1. Determination of subsurface suitability for AGR
2. Determination of availability of water for recharge
3. Estimation of the demand for reclaimed water
4. Determination of the governing hydraulic parameters
5. Determination of the main geochemical process parameters
6. Hydraulic and reactive modeling
7. Scenario analysis (AGR methods)
Assessment of Subsurface Suitability

1.1 General hydrogeological conditions

- General geological formations
- Mineralogical characterisation
- Aquifer’s confinement and isotropy
- Groundwater table levels (seasonal variations)
- Groundwater flow pattern (velocity and direction)
- Withdrawal from studied area
- Hydraulic connections with surface waters
- Vadose characteristics and variations

1.2 Other AGR related conditions

- Historical contaminations
- Climatic conditions
- Legislative aspects
- Socio-economic aspects etc.
Artificial groundwater recharge (AGR) concept

Artificial recharge by artificial recharge basins
Natural recharge by precipitations
Artificial recharge by precipitations
Monitoring for calculation of the water balance as a management tool

Compiled and adapted from USGS circular 1247 (2003) and NASRI (2005)
Main Hydraulic Parameters

Infiltration characteristic parameters

- Porosity
- Hydraulic conductivity
- Transmisivity
- Permeability
- Storage-related coefficients
 - Storativity
 - Specific storage coefficient
 - Specific yield
 - Specific retention
 - Total storage capacity

Optimum infiltration rate
Main Hydraulic Parameters (cntd)

Clogging-related parameters

- Filtrations of suspended solids
- Microbiological growth (biofouling)
- Chemical precipitation
- Clay swelling and dispersion
- Air entrapment
- Mobilisation of aquifer sediments

Methods to restore the hydraulic properties
Clogging prediction methods
Modeling

Reactive and non-reactive modeling

- Spatial distribution of piezometric heads
- Groundwater table seasonal fluctuations
- Natural flow exchange with surface water
- Evapotranspiration models
- Hydraulic simulation of recharge cycles
- Solute transport modeling
- Hydraulic scaling for overall recharge estimation
Removal of compounds from sewage effluent by SAT

- Suspended solids: 91%
- Nitrogen (total): 30-70%
- Phosphate: 40-80%
- Heavy metals
 - Zn: 82%
 - Cu: 87%
 - Cd: 6.5%
 - Pb: 20%
- Fecal coliforms: from 10^5-10^6 to 10-500 per 100 ml
- Viruses: total removal
- Organic carbon: complete mineralisation
- TOC: from 10-20 mg/l to 5 mg/l
- AOX: 50-99%
Scenario Analysis (methods of AGR)

Infiltration ponds and shafts

Recharge ponds
- vertical, as well as lateral infiltration
- can use existing water ponds or quarries
- bottom clogging can be prevented by sand layers

Recharge shafts with wells
- it can be dug manually
- large storage and recharge potential
- variable no. of wells to enhance the recharge
- very high efficiency

Adapted from Ministry of Water Resources, India (2007)
Scenario Analysis (methods of AGR)

Infiltration wells for soil aquifer treatment (SAT)

- requires much less land use
- it can be used for confined and unconfined aquifers
- instantaneous recharge
- requires higher quality water
- it can be used to recharge more than one aquifer
<table>
<thead>
<tr>
<th>Location</th>
<th>Infiltrated water</th>
<th>Pollution load</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMANY</td>
<td>surface water, storm water, treated waste water (after oxidation)</td>
<td>9 mg/l DOC</td>
<td>Infiltration areas and ponds</td>
</tr>
<tr>
<td>Berlin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISRAEL</td>
<td>waste water effluents</td>
<td>18 mg/l DOC</td>
<td>Intermediate recharge by wells</td>
</tr>
<tr>
<td>Tel Aviv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCE</td>
<td>heavy and light polluted waste water</td>
<td>> 250 mg/l BOD5</td>
<td>infiltration ponds</td>
</tr>
<tr>
<td>Grau du Roi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>waste water after oxygen supply</td>
<td>150 mg/l BOD5</td>
<td></td>
</tr>
<tr>
<td>Madison</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>treated reclaimed water</td>
<td>max 2 mg/l TOC</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZAMBIA</td>
<td>waste water from septic tanks</td>
<td>very high organic load</td>
<td></td>
</tr>
<tr>
<td>Lusaka</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Berlin, GERMANY

75% of drinking water demand (220 mil. m³/year) covered by bank filtration and artificial groundwater recharge

1. Storage ponds
2. Slow sand filtration and infiltration basins

Natural and Artificial Systems for Recharge and Infiltration

Cooperation project:
Advantages of AGR and SAT using Reclaimed Wastewater

- Groundwater recharge and storage
- Environmental sound, flood controlling
- Natural attenuation processes improve the water quality (additional treatment step)
- Natural close loop between recharge and discharge units, prevention of land subsidence
- Cost effective (not cheap) by profiting of the natural attenuation processes
- Needs detailed knowledge of the subsurface
- Monitoring and modeling is required
CONCLUSION

- Environmental sound water use must have highest priority essentially in arid areas.
- Integrated water resources management is the predominant requirement for sustainability in the water sector.
- Research in the elimination of emerging pollutants during sewage treatment is required.
- Secondary sewage treatment by SAT/AGR can be an opportunity to recharge aquifers.
Thank you for your attention