ANALYZING THE EFFECTS OF CLIMATE CHANGE ON CROP WATER REQUIREMENTS IN SAUDI ARABIA

Shakhawat Chowdhury, PhD, P. Eng.
Assistant Professor
King Fahd University of Petroleum and Minerals, Saudi Arabia
Saudi Arabia: One of the arid countries in MENA

Limited groundwater reserves; Limited surface RO

Agriculture sector: The highest consumer of GW

Predicted significant change in climate in 2050

Several crops are produced in Saudi Arabia

Needs water conservation
Objective

- Characterize crop productions in Saudi Arabia
- Predict CWR of crops on a regional basis
- Assess seasonal variability of CWR
- Analyze the effects of temperature on CWR
- Analyze the effects of growing seasons on CWR
Obtained data on area and crop productions from SSYB

Used FAO approved CROPWAT 8.0 Software

Applied Penman-Monteith method for predicting ET_o / ET_c

Applied climatic conditions of 2011 and 2050 (Predicted)
Crop productions in Saudi Arabia

<table>
<thead>
<tr>
<th>Crops</th>
<th>Riyadh</th>
<th>Makkah</th>
<th>Madinah</th>
<th>Qaseem</th>
<th>Eastern Region</th>
<th>Aseer</th>
<th>Tabouk</th>
<th>Hail</th>
<th>Jazan</th>
<th>Najran</th>
<th>Al-Baha</th>
<th>Al-Jouf</th>
<th>Total Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>30896</td>
<td>871</td>
<td>194</td>
<td>22792</td>
<td>30691</td>
<td>3155</td>
<td>17889</td>
<td>23558</td>
<td>763</td>
<td>413</td>
<td>65162</td>
<td>195884</td>
<td></td>
</tr>
<tr>
<td>Millet</td>
<td>-</td>
<td>1255</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>-</td>
<td>-</td>
<td>2422</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3760</td>
</tr>
<tr>
<td>Sorghum</td>
<td>1037</td>
<td>5853</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2173</td>
<td>-</td>
<td>-</td>
<td>83618</td>
<td>-</td>
<td>76</td>
<td>-</td>
<td>92757</td>
</tr>
<tr>
<td>Maize</td>
<td>2212</td>
<td>619</td>
<td>1</td>
<td>5983</td>
<td>282</td>
<td>201</td>
<td>20</td>
<td>16967</td>
<td>935</td>
<td>-</td>
<td>99</td>
<td>2179</td>
<td>29498</td>
</tr>
<tr>
<td>Barley</td>
<td>652</td>
<td>306</td>
<td>12</td>
<td>55</td>
<td>226</td>
<td>660</td>
<td>278</td>
<td>360</td>
<td>16</td>
<td>33</td>
<td>60</td>
<td>801</td>
<td>3459</td>
</tr>
<tr>
<td>Tomato</td>
<td>4383</td>
<td>2041</td>
<td>1050</td>
<td>920</td>
<td>1605</td>
<td>1547</td>
<td>389</td>
<td>611</td>
<td>1221</td>
<td>540</td>
<td>108</td>
<td>693</td>
<td>15108</td>
</tr>
<tr>
<td>Potato</td>
<td>3446</td>
<td>172</td>
<td>2</td>
<td>3826</td>
<td>135</td>
<td>67</td>
<td>2342</td>
<td>5800</td>
<td>-</td>
<td>32</td>
<td>6</td>
<td>1837</td>
<td>17665</td>
</tr>
<tr>
<td>Vegetables</td>
<td>40879</td>
<td>9080</td>
<td>983</td>
<td>6671</td>
<td>4926</td>
<td>1142</td>
<td>1082</td>
<td>3885</td>
<td>2486</td>
<td>927</td>
<td>251</td>
<td>1601</td>
<td>73913</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>50090</td>
<td>638</td>
<td>2485</td>
<td>14786</td>
<td>2673</td>
<td>1419</td>
<td>9008</td>
<td>7127</td>
<td>-</td>
<td>1914</td>
<td>52</td>
<td>11908</td>
<td>102100</td>
</tr>
<tr>
<td>Dates</td>
<td>43178</td>
<td>10771</td>
<td>18576</td>
<td>39303</td>
<td>13548</td>
<td>5075</td>
<td>2249</td>
<td>18743</td>
<td>288</td>
<td>3367</td>
<td>1395</td>
<td>5470</td>
<td>161963</td>
</tr>
<tr>
<td>Citrus</td>
<td>3582</td>
<td>1711</td>
<td>755</td>
<td>2014</td>
<td>820</td>
<td>329</td>
<td>1868</td>
<td>1350</td>
<td>182</td>
<td>1833</td>
<td>43</td>
<td>727</td>
<td>15214</td>
</tr>
<tr>
<td>Grapes</td>
<td>1378</td>
<td>727</td>
<td>3105</td>
<td>1058</td>
<td>177</td>
<td>434</td>
<td>1154</td>
<td>1139</td>
<td>-</td>
<td>41</td>
<td>194</td>
<td>1628</td>
<td>11035</td>
</tr>
<tr>
<td>Total</td>
<td>181733</td>
<td>33544</td>
<td>27165</td>
<td>97408</td>
<td>55083</td>
<td>16280</td>
<td>36279</td>
<td>79540</td>
<td>91168</td>
<td>9450</td>
<td>2700</td>
<td>92006</td>
<td>722356</td>
</tr>
</tbody>
</table>
Crop productions: Wheat, Alfalfa, Dates
Crop productions: Wheat, Alfalfa, Dates
CWR of crops on regional basis

![Chart showing CWR of crops on regional basis]

- **Riyadh**: Case I (3,000 MCM/yr), Case II (2,500 MCM/yr)
- **Makkah**: Case I (1,000 MCM/yr), Case II (500 MCM/yr)
- **Madinah**: Case I (600 MCM/yr), Case II (400 MCM/yr)
- **Qaseem**: Case I (1,500 MCM/yr), Case II (1,200 MCM/yr)
- **Eastern Region**: Case I (800 MCM/yr), Case II (600 MCM/yr)
- **Aseer**: Case I (400 MCM/yr), Case II (300 MCM/yr)
- **Tabouk**: Case I (300 MCM/yr), Case II (200 MCM/yr)
- **Hail**: Case I (500 MCM/yr), Case II (300 MCM/yr)
- **Jazan**: Case I (200 MCM/yr), Case II (100 MCM/yr)
- **Najran**: Case I (100 MCM/yr), Case II (50 MCM/yr)
- **Al-Baha**: Case I (100 MCM/yr), Case II (50 MCM/yr)
- **Al-Jouf**: Case I (50 MCM/yr), Case II (25 MCM/yr)

10/28/2014
CWR on crop basis

a. Case I (2011)
- Dates: 3492
- Wheat: 1210
- Alfalfa: 1837
- Vegetable: 858
- Other fruits: 925
- Other cereal crops: 388

b. Case II (2050)
- Dates: 3668
- Wheat: 404
- Alfalfa: 1928
- Vegetable: 974
- Other fruits: 1293
- Other cereal crops: 911

10/28/2014
CWR: crops and regional distributions

<table>
<thead>
<tr>
<th>CWR (MCM/yr)</th>
<th>Dates</th>
<th>Wheat</th>
<th>Alfalfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riyadh, Qaseem, Madinah, Hail, ER, Makkah</td>
<td>Al-Jouf, Riyadh, Qaseem, ER, Tabouk, Hail</td>
<td>Riyadh, Qaseem, Al-Jouf, Tabouk, Hail</td>
<td></td>
</tr>
<tr>
<td>Riyadh, Qaseem, Makkah, Hail</td>
<td>Riyadh, Madinah, Qaseem, Tabouk, Makkah, Hail, Nazran, Al-Jouf</td>
<td>Jazan, Hail</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- **Dates:** Riyadh, Qaseem, Madinah, Hail, ER, Makkah
- **Wheat:** Al-Jouf, Riyadh, Qaseem, ER, Tabouk, Hail
- **Alfalfa:** Riyadh, Qaseem, Al-Jouf, Tabouk, Hail

Legend:
- Riyadh, Qaseem, Madinah, Hail, ER, Makkah
- Al-Jouf, Riyadh, Qaseem, ER, Tabouk, Hail
- Riyadh, Madinah, Qaseem, Tabouk, Makkah, Hail, Nazran, Al-Jouf
- Jazan, Hail
Seasonal variability of CWR

Case I (2011)
Effects of temperature on CWR

- Varied Temperature by 0 – 5°C
- CWR increases from 8713 to 9716 MCM for $\Delta T = 5^\circ$C
- Slope of CWR = 201 MCM/$^\circ$C
- CWR change = 1.9 – 2.9%/$^\circ$C for dates
 = 1.9 – 3.0%/$^\circ$C for alfalfa
 = 2.2 – 3.8%/$^\circ$C for wheat
Effects of temperature on CWR

2011 to 2050: CWR increase: 5.8 (5.0–7.1%)

CWR increase:

- **Wheat:**
 - Riyadh = 5.8%; Al-Jouf: 6.5%

- **Dates:**
 - Riyadh = 5.5%; Qaseem: 5.8%

- **Alfalfa:**
 - Riyadh = 5.5%

Overall: CWR increase = 11.9 MCM/yr ≅ 4900 tons wheat
CWR per ha of cultivation

1 ha land cultivation:

Case I:
- Wheat: 6467 m3/ha
- Dates: 23896 m3/ha
- Alfalfa: 19742 m3/ha

Case II:
- Wheat: 6839 m3/ha
- Dates: 25203 m3/ha
- Alfalfa: 20803 m3/ha

10/28/2014
CWR per ha of cultivation: Riyadh

![Graph showing CWR per ha of cultivation for different crops in Riyadh. The graph compares Case I and Case II for various crops including Wheat, Sorghum, Maize, Barley, Tomato, Potato, Other vegetables, Alfalfa, Dates, Citrus, and Grapes. The x-axis represents the crops, and the y-axis represents the CWR (m3/ha) on a logarithmic scale from 0 to 30,000. The graph indicates a significant difference in CWR between Case I and Case II for Alfalfa and Dates.]
Effects of growing periods on CWR

- Wheat:
 - Exponential decay relationship for a shift of up to 75 days earlier
- Dates: No significant effects
- Alfalfa: No significant effects
- Sorghum: Significant effects

- Total Conservation: 731 MCM/yr: Case I

- Wheat:
 - Shift from Jan 15 to Nov 01: Conserve: 572 MCM/yr

10/28/2014
Effects of growing periods: Wheat

<table>
<thead>
<tr>
<th>Regions</th>
<th>Current</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>S₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riyadh</td>
<td>199.8</td>
<td>172.6</td>
<td>146.1</td>
<td>131.5</td>
<td>120.7</td>
<td>117.4</td>
</tr>
<tr>
<td>Makkah</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
<td>2.1</td>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>Madinah</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qaseem</td>
<td>131.6</td>
<td>109.8</td>
<td>88</td>
<td>75.2</td>
<td>68.6</td>
<td>70</td>
</tr>
<tr>
<td>Eastern Region</td>
<td>135.1</td>
<td>113.7</td>
<td>92.4</td>
<td>78.3</td>
<td>68.5</td>
<td>67.6</td>
</tr>
<tr>
<td>Aseer</td>
<td>13.5</td>
<td>12.8</td>
<td>12.2</td>
<td>11.8</td>
<td>11.8</td>
<td>12.1</td>
</tr>
<tr>
<td>Hail</td>
<td>125.5</td>
<td>108.3</td>
<td>90</td>
<td>77.8</td>
<td>65.2</td>
<td>56.5</td>
</tr>
<tr>
<td>Tabouk</td>
<td>117.1</td>
<td>102.8</td>
<td>85.7</td>
<td>73.3</td>
<td>63.2</td>
<td>58.2</td>
</tr>
<tr>
<td>Jazan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Najran</td>
<td>4.7</td>
<td>4.4</td>
<td>4</td>
<td>3.8</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Al-Baha</td>
<td>2.6</td>
<td>2.4</td>
<td>2.2</td>
<td>2.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Al-Jouf</td>
<td>476.2</td>
<td>417</td>
<td>347.5</td>
<td>301.1</td>
<td>265.7</td>
<td>248.7</td>
</tr>
<tr>
<td>Total</td>
<td>1208.7</td>
<td>1046.2</td>
<td>870.4</td>
<td>757</td>
<td>671.5</td>
<td>638.3</td>
</tr>
</tbody>
</table>

Current: Jan 15–May 24; S₁: (Jan 01–May 10); S₂: (Dec 15–Apr 23); S₃: (Dec 01–Apr 09); S₄: (Nov 15–Mar 24); S₅: (Nov 01–Mar 10)
Comparing water supplies and CWR

<table>
<thead>
<tr>
<th>Regions</th>
<th>Water Supply</th>
<th>CWR</th>
<th>Water loss</th>
<th>% Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riyadh</td>
<td>3786.4</td>
<td>2802.5</td>
<td>983.9</td>
<td>26.0</td>
</tr>
<tr>
<td>Makkah</td>
<td>797.3</td>
<td>402.3</td>
<td>395.0</td>
<td>49.5</td>
</tr>
<tr>
<td>Madinah</td>
<td>896.4</td>
<td>558.0</td>
<td>338.4</td>
<td>37.7</td>
</tr>
<tr>
<td>Qaseem</td>
<td>2105.7</td>
<td>1425.9</td>
<td>679.8</td>
<td>32.3</td>
</tr>
<tr>
<td>Eastern Region</td>
<td>843.6</td>
<td>485.0</td>
<td>358.6</td>
<td>42.5</td>
</tr>
<tr>
<td>Aseer</td>
<td>324.1</td>
<td>145.6</td>
<td>178.5</td>
<td>55.1</td>
</tr>
<tr>
<td>Tabouk</td>
<td>678.8</td>
<td>390.6</td>
<td>288.2</td>
<td>42.5</td>
</tr>
<tr>
<td>Hail</td>
<td>1252.0</td>
<td>867.3</td>
<td>384.7</td>
<td>30.7</td>
</tr>
<tr>
<td>Jazan</td>
<td>1889.0</td>
<td>574.3</td>
<td>1314.7</td>
<td>69.6</td>
</tr>
<tr>
<td>Najran</td>
<td>233.4</td>
<td>150.4</td>
<td>83.0</td>
<td>35.5</td>
</tr>
<tr>
<td>Al-Baha</td>
<td>111.1</td>
<td>38.8</td>
<td>72.3</td>
<td>65.1</td>
</tr>
<tr>
<td>Al-Jouf</td>
<td>1398.3</td>
<td>872.7</td>
<td>525.6</td>
<td>37.6</td>
</tr>
</tbody>
</table>
Issues on water conservation

- Water losses through percolation
- Irrigation efficiency
- High evapotranspiration
- Water loss through pipeline
- Reuse of treated wastewater
- Crop yields and product quality
- Technical feasibility
- Cost per unit production
Summary, Conclusions, Recommendation

- Understand crop yields for differed growing seasons
- Life cycle analysis for TWW reuse
- Water footprint analysis related to cattle farms
- Technology to minimize water percolation
- Full or partial green-house cultivation
- Leak detection in the pipelines
- Recycling and reuse of TWW
Thanks for listening