

Water Futures Under a Changing Climate

Dr Rachael McDonnell
Head of Climate Change Modeling and Adaptation
International Center for Biosaline Agriculture

Overview

 What does climate change modelling tell us about future conditions in the Gulf States?

• What are the possible adaptation solutions?

Introduction

- Gulf states water systems prone to any CC changes that affect supply or increase demand
 - Reduce rainfall and/or bring storm flows
 - Increase air temperature/evapotranspiration
 - Change temperature/salinity of the sea impairing desal
 - Change temperature/salinity affecting treated wastewater processes

What do climate change models tell us about future conditions in the Gulf States?

- General Circulation Models (GCMS) captures the global dynamic processes and transfers of energy and moisture
- BUT scale is >150km per grid cell
- Regional climate modeling needed

Dynamic downscaling at ICBA

- ICBA tuned regional climate model (WRF)
- GCMs: CNRM-CM5, MIROC5 and CESM1 identified as best for MENA

DOMAIN	RESOLUTION
MENA	50 km
UAE / Gulf States Morocco / Tunisia / Yemen /Lebanon / Jordan / Palestine / Egypt /	15 km

(1951 - 2005)

Current

RCP4.5

RCP8.5

13 regional models have been assessed against ERA-Interim on sub-regions including the Gulf states -2m temperature and rainfall have been

RCM

assessed

Models assessed

Tool: NASA-JPL RCMES

GCM CCCma-CanESM2 CNRM-CERFACS-CNRM-CM5 ICHEC-EC-EARTH ICHEC-EC-EARTH ICHEC-EC-EARTH ICHEC-EC-EARTH MOHC-HadGEM2-ES MOHC-HadGEM2-ES MPI-M-MPI-ESM-LR MPI-M-MPI-ESM-LR MPI-M-MPI-ESM-LR NCAR-CESM1 NCC-NorESM1-M

UQAM-CRCM5
CLMcom-CCLM4-8-17
CLMcom-CCLM4-8-17
MPI-CSC-REMO2009
KNMI-RACMO22T
DMI-HIRHAM5
CLMcom-CCLM4-8-17
KNMI-RACMO22T
CLMcom-CCLM4-8-17
MPI-CSC-REMO2009
UQAM-CRCM5
ICBA-WRF3.6
DMI-HIRHAM5

- Most models don't reproduce the climatology in the Gulf states in terms of Rainfall
- Some models have cold/hot bias exceeding 5 degrees in summer

Temperature will increase especially over the continental areas

Temperature will likely to increase by more than 4.5 °C under RCP8.5 scenario in central Saudi Arabia by the end of this Century

Heat waves frequency will likely to increase by more than 60% under RCP8.5 especially over the costal zones

Maximum consecutive dry days will likely to increase by more than 20% under RCP8.5 in GCC countries

Future changes 2071-2090 vs 1986-2005

Drop in rainfall reaching more than 30% by 2100

Increase in 2m
Temperature reaching
4.5 degrees by 2100

Temperature related indices

Trend in very warm days percent (T>90th percentile of 1986-2005)

Trend in highest number of consecutive summer days (T>35°C compared to 1986-2005)

Trend in number of summer days (T>35°C compared to1986-2005)

Implications for water sources and consumption – a balanced policy

■ MED

MSF

GW

Reuse

عبادرة آبوظبت العالمية للبيانات البيئية Abu Dhabi Global Environmental Data Initiative an initiative of

Droughts - key stress

- Aridity stressed during droughts
- No drought monitoring or management in place
- Will not be able to irrigate out of this in the future

What innovations are needed in demand management?

- The way food is grown
- The way we view our landscapes

What innovations are needed in demand management?

- Water efficiency needs to be greatly improved
- ETa modeling can support water accounting approach

What innovations are needed in supply?

- Desal and Treated waste water key so technologies managing salinity
- Processing to ensure safety and consumer trust
- The types of water we use where
 - Saline
 - Produced water
 - TWW
 - RO Brine effluent

Greatest innovations in policy and

law/regulation

- How can we guide user behavior?
- Groundwater governance needs to be effective AND implemented if strategic reserves are to be protected
- Regulations to enhance TWW use
- Do we need to price water differently?
- Urban development offers great opportunity – green building codes

In numbers

1,433
green building
projects completed
across Dubai city
since 2010

120 million
square feet real estate
registered with Dubai
Municipality for green
buildings

20% in electricity consumption

15% in water consumption

The new Al Safat rating system for green buildings wil lead to reduction goals of:

20% carbon dioxide emissions

50% waste reduction

Climate smart water management can be win-win

- Growing awareness and acknowledgement of a changing climate across many different users and demographics
- Green technologies are being boosted and more accessible to all
- Challenging our ideas as to the way food is grown
- Encourages integrated thinking water energy-food

Credits and Thanks

- Karim Bergaoui, Makram Belhaj Fraj, Giulio Caroletti Rashyd Zaaboul
- USAID grants MAWRED and MENA RDMS
- Islamic Development Bank and Govt of UAE

A unique Center of Excellence looking at Agriculture for Tomorrow

Thank you

For more information and ICBA publications visit www.biosaline.org

International Center for Biosaline Agriculture (ICBA) is an international, non-profit organization that aims to strengthen agricultural productivity in marginal and saline environments through identifying, testing and facilitating access to sustainable solutions for food, nutrition and income security.