



# Assessment of the Water-Energy Nexus in the Municipal Water Sector in the Eastern Province, Saudi Arabia

**MUTRAFI. HOMOUD** 

MSc Environmental Management, Arabian Gulf University

March 2017

#### **Overview**

- INTRODUCTION
- METHODOLOGY
- MAIN RESULTS
- PROPOSED MITIGATIONS MEASURES
- CONCLUSION AND RECOMMENDATIONS

#### Introduction



**Energy for Water** 

#### The main objective of the study:

"Bridge the water-energy nexus knowledge gap to understand current nexus relationship and dynamics in the region"

- Quantitative data (energy tag in water/water tag in energy).
- Nexus associated environmental externalities (GHGs).
- Management alternatives and recommendations to save water & energy.

#### **Desired outcome:**

 Formulating and implementing nexus management approach for water and energy at a country level.

## Methodology

- The method adopted is a case study review using Eastern
   Province of Saudi Arabia as study area.
- Scope: Energy in water cycle, water in energy generation.
- Data gathered mainly from operating plants, published Saudi governmental water-energy authorities reports.
- An approved mathematical equations were utilized in estimating the water-energy nexus values.

Energy (kWh) = 
$$\frac{9.8 \text{ m s}^{-2} \times \text{Lift (m)} \times \text{Mass (kg)}}{3.6 \times 10^6 \times \text{Efficiency (\%)}}$$

Study Area



| Population | Population | <b>Water Demand</b> | Per capita Cons | Demand growth |
|------------|------------|---------------------|-----------------|---------------|
| (2013)     | GR         | (MCM, 2013)         | (CM, 2013)      |               |
| 4645516    | 3.7%       | 599                 | 129             | 2.9%          |

## Results 1. Energy for Water





Water Value Chain (Groundwater, Desalination and WWTPs) Electric Energy Consumption in 2013 at the Eastern Province, in GWh and percentage.

## Results 2. Water for Energy



Cooling Water Requirements in Thermal Power Plants of EP Average 0.125 m<sup>3</sup>/MWH

#### Results 3. GHG emission

Electric Power Plants CO<sub>2</sub> Emission in Eastern Province (2013 Design Capacity).



#### Results 3. GHG emission

CO<sub>2</sub> Emissions from Eastern Province Water Value Chain.



## **MITIGATIONS MEASURES**

#### A. Raising conservation awareness and water saving devices

- Reduce consumption by 10% in municipal sector
- Water saving devices could save up to 20%
- •Per capita consumption of Eastern Province from 129 to 91 m<sup>3</sup> per capita, 176 MCM could be saved.

#### B. BWRO as a potential supply to Riyadh

The provision of water to the capital Riyadh through Brackish Water RO (BWRO) proven to be more energy efficient (requires less energy 4.4 kWh/m³) compared to the coastal Salt Water RO (SWRO) (11.6 kWh/m³) or MSF (45.7 kWh/m³)

#### C. Hybrid Desalination

The hybrid configuration (MSF/RO) offers various operational flexibility, economical, energy and environmental advantages.



- D. Renewable Energies
- E. Treated effluent as coolant in power plants

#### Conclusion

- Water and energy are inevitably linked and interrelated in Saudi Arabia. Substantial Energy goes into water production specifically thermal MSF/MED desalination, large volumes of water are being used in energy production.
- The Eastern Province's water-energy nexus is affected by the distance from coastal area of the Arabian Gulf. The area's water dependency on energy is more prevalent.
- Riyadh water provision (through coastal desalination and conveyance) is a key feature of the water-energy nexus in the Eastern Province which influences the shape of the nexus significantly.

- GHG emission from water cycle exceeded 15 Million Tons of CO<sub>2</sub>, mainly attributed to thermal desalination, CO<sub>2</sub> from power plants was 3000 times that associated with entire water cycle at Eastern Province.
- Energy requirement for the entire water cycle represents 5% of the Kingdom total electric generation capacity and 13% of Eastern Province. Largely dominated by thermal desalination operation and transmission.
- Water management is highly dependent on energy, and energy generation is highly reliant on water resources specifically as we move inland. Desalination cannot be ruled out but it can/should be made more environmentally friendly. Water for cooling is not sustainable option in energy sector.

## Recommendations

- Reduce energy consumption in water supply chain (specifically MSF)
  through increased process efficiency and, using renewable energies or
  hybrid systems.
- Water usage at power plant should be minimized (using treated effluent as cooling medium) or elimination by adopting other cooling technologies; e.g., dry cooling or others.
- Energy generation through fossil fuel is not a sustainable and contributes largely to GHG. Therefore, renewable energy generation is highly recommended. Support and implement initiatives related to solar/geothermal desalination, solar or wind groundwater, energy recovery from WWTP.

### Recommendations

- Assess the feasibility/sustainability of BWRO to produce Riyadh water. Renewable energy (preferably solar) in water transmission operation to Riyadh form coastal desalination (RO) is recommended.
- It is recommended to conduct similar research on the nexus employing water and energy modeling software preferably WEAP-LEAP programs which could result in a more precise and long-term representation of W-E nexus.
- There is no integrated water-energy R&D entity in GCC.
   Overlapping R&D is necessary as per the nature of water-energy nexus to achieve best available results. A mechanism to initiate and conduct integrated water-energy R&D is recommended.

## Thank You

#### Special thanks to:

- (AGU) Prof. Waleed Prof. Ibrahim & Dr Alaa.
- Saudi Water and Electricity Authorities (MOWE, SWCC, ECRA)