

RUNOFF COLLECTION POTENTIAL IN ABHA, SAUDI ARABIA: AN ANALYSIS WITH WATERSHED MODELING SYSTEM SOFTWARE

S. Chowdhury; M.I. Fahmi

Department of Civil and Environmental Engineering

King Fahd University of Petroleum & Minerals

Overview

- Introduction
- Study Area
- Methodology
- Analysis and Results
- Conclusions

Introduction

- Water scarcity is an issue in Saudi Arabia
- Domestic water demand 2.6 BCM/year
- Consumption of freshwater was 16.3 BCM in 2014
- DW: > 60% of DWD; New investment;
- About 3.4-25 kg CO₂ for 1 m³ of DW
- Runoff use has co-benefit: less costly; reduce CO₂

Introduction

- Countrywide average rainfall: < 100 mm/year
- Total 449 dams with 2.1 BCM capacity
- SW region has 126 dams with 760 MCM capacity
- SW region has average rainfall: 200-250 mm/year
- Seasonal flood events with thunderstorms and intense rainfall
- Scope of new dams in the SW region

Study Area

- Annual average rainfall: 215.3 mm
- Existing dam (213 MCM capacity) in SW corner
- In the NE corner, a new dam can be constructed
- Capital of Asir Province

Methodology: New Dam

Sharp Section over Wadi

- The location was chosen by Google-Earth software
- Mild slope of wadi; Sharp section over the channel
- Distance from village and road: < 15 km

Methodology: Basin Delineation

- WMS software was used for delineating basin
- The SCS method was used

Abha Basin (Area: 112 mi^2 = 290 Km^2)

Methodology: Runoff Generation

- HEC-HMS software was used
- Input parameters:
 - Rainfall duration: 24, 36 and 48 hours
 - Rainfall depth: For T of 25, 50 and 100 years with SD = 20%
 - Curve number: Calculated and applied with SD = 15

Area	Return Periods	Runoff depth (mm)	Runoff depth (mm) with 20% SD		
Name	(year)	from IDF	ML	MIN	MAX
Abha	100	114	115	90	140
	50	100.2	100	80	120
	25	86.2	86	69	103

Methodology: CN

Basin no.	Area, Ai (km²)	CN _i value	A _i *CN _i
12B	31.61	67.79	2142.59
13B	13.18	65.59	864.65
14B	32.02	63.77	2042.20
15B	73.26	69.61	5099.80
16B	18.55	68.13	1263.51
17B	46.36	68.39	3170.73
18B	21.93	68.53	1502.62
19B	16.21	68.70	1113.64
20B	14.67	65.52	960.92
21B	22.67	62.28	1412.21
Σ	290		19572

Area Name	Area	CN from Curve Number with '15' as SD		'15' as SD	
	(km2)	WMS	ML	MIN	MAX
Abha	290	67	65	50	80

Result: Runoff generation from 27 Fuzzy Rules

25 year return period

Rule (R _i)	If	Depth (mm)	and	Duration (hour)	and	CN	then	Runoff (MCM)
R1	lf	69	and	24	and	50	then	0.124
R2	lf	69	and	24	and	65	then	1.69
••••								
R26	lf	103	and	48	and	65	then	7.8
R27	lf	103	and	48	and	80	then	15.36

100 year return period

Rule (R _i)	If	Depth (mm)	and	Duration (hour)	and	CN	then	Runoff (MCM)
R_1	lf	90	and	24	and	50	then	0.772
R ₂	lf	90	and	24	and	65	then	3.625
••••								
R ₂₆	lf	140	and	48	and	65	then	14.74
R ₂₇	lf	140	and	48	and	80	then	24.6

25 year return period: Variable CN and rainfall

Curve	Runoff volume (MCM)			
number	Low	Geo. mean	High	
50	0.124 (R ₁)	0.79	2.58 (R ₂₅)	
65	1.69 (R ₂)	4.09	7.8 (R ₂₆)	
80	5.2 (R ₃)	9.68	15.36 (R ₂₇)	

Rainfall	Runoff volume (MCM)				
(mm)	Low	Geo. mean	High		
69	0.124 (R ₁)	1.57	7.66 (R ₉)		
86	0.61 (R ₁₀)	3.47	11.38 (R ₁₈)		
103	1.42 (R ₁₉)	5.75	15.36 (R ₂₇)		

50 year return period: Variable CN and rainfall

Curve	Runoff volume (mcm)			
number	Low	Geo. mean	High	
50	0.4 (R ₁)	1.64	4.29 (R ₂₅)	
65	2.63 (R ₂)	5.95	10.84 (R ₂₆)	
80	6.9 (R ₃)	12.53	19.53 (R ₂₇)	

Rainfall	Runoff volume (mcm)		
(mm)	Low	Geo. mean	High
80	0.4 (R ₁)	2.76	10.03 (R ₉)
100	1.26 (R ₁₀)	5.32	14.64 (R ₁₈)
120	2.52 (R ₁₉)	8.33	19.53 (R ₂₇)

100 year return period: Variable CN and rainfall

Curve	Runoff volume (MCM)				
number	Low	Geo. mean	High		
50	0.77 (R ₁)	2.76	6.71 (R ₂₅)		
65	3.63 (R ₂)	8.11	14.74 (R ₂₆)		
80	8.54 (R ₃)	15.66	24.6 (R ₂₇)		

Rainfall	Runoff volume (MCM)		
(mm)	Low	Geo. mean	High
90	0.77 (R ₁)	3.98	12.29 (R ₉)
115	2.17 (R ₁₀)	7.54	18.29 (R ₁₈)
140	4.12 (R ₁₉)	11.67	24.6 (R ₂₇)

Result: Runoff Use and Cost Saving

- Return Period: T = 25, 50 and 100-years:
- Runoff = 0.124 15.36 MCM, 0.4 19.53 MCM and 0.77 24.6 MCM
- Cost for using surface runoff = US\$ 0.756/m³
- Cost savings by using runoff = US\$ 1.084/m³
- Use of 1 m³ DW: Cost US\$ 1.84 (1.31 2.37)

Result: Runoff Use and Cost Saving

Result: Runoff Use and CO₂ Reduction

Desalination methods	CO ₂ (Kg) emission for producing 1 m ³ of DW
MSF	20.4-25.0
MSF _{cogen}	13.9-15.6
MED	11.8-17.6
MED _{cogen}	8.2-8.9
RO	3.4-6.0

- Al-Shuqaiq desalination plant delivers DW to Abha
- CO2 emission for MSF_{Cogen} = 14.75 kg CO₂/m³ DW

Result: Runoff Use and CO₂ Reduction

Conclusions/Recommendations:

- Up to 24.6 MCM runoff can be collected by a new dam
- Use of runoff can save up to US\$ 26.67 million
- CO₂ reduction can be up to 362.85 million kg
- Needs feasibility study for the location and cost of dam construction

Thank You

FOR LISTENING