

12<sup>th</sup> 12th Gulf Water Conference "Water in the GCC ... Towards Integrated Strategies" 28-30 March 2017 Manama-Kingdom of Bahrain

## Flood forecasting model of Medjerda River in the context of Water Resources Management of Tunisia

S. Abidi, O. Hajji, L.A. Mehrez, H. Hamadi,











# Water resources

The use of conventional water resources in Tunisia reach its limits. Being fully aware of this situation, Tunisia has adopted a strategy to develop resources and secure a better control of demands in various socio-economic sectors. This strategy's main objectives consist to:

- Satisfy water supply for drinking all over the country.
- Extend irrigated areas and rationalize irrigation waters.
- Satisfy industrial, tourism and environmental water demands.
- The protection against floods and droughts.
- The sustainable and fair use of water resources and their preservation against all types of pollution.

## Water resources

In order to achieve these objectives, a set of measures was adopted :

- To mobilize all water resources which can mobilized ;
- To use the most of ground resources which can be used ;
- To identify new resources in areas where surface water is not yet well controlled and ground water not well evalued;
- To adopt a wide strategy of water economy and the use of non conventional water agriculture and industrial fields;
- To follow up the quantity and quality of water resources ;
- To develop the artificial recharge of groundwater with surface and reclaimed water.

# Tunisia strategy

Water mobilization









#### Desalination of sea water

Mejerda River



- •75% length and 67% area in Tunisia,
- covers more 80% of Tn water resources,

## Medierda flooding



# Solution



contribute to the management system and flood warning.

# Methodology



## Performance measures

#### Numerical criteria

Nash–Sutcliffe model coefficient :  $Nash\% = 1 - \frac{\sum_{i=1}^{n} (Qo - Qc)^{2}}{\sum_{n=1}^{n} (Qo - Qm)^{2}}$ 

Peak relative error:  $PRE = \frac{Qc \ max - Qo \ max}{Qc \ max}$ 

Peak time error:  $PTE = t_{Qc} - t_{Qo}$ 

#### Graphical criteria

Error and the correlation between observed and forecasted flow,

# Results



## Flood forecasting



## Flood forecasting

#### February 2011 (4 h)



## Flood management system



14

## Flood management system



# Thank you for your aftention!



