Modeling the Impact of Climate Change on Groundwater Resources in Arid and semi-Arid Areas

Prof. Abdelkader LARABI
Regional Water Centre of Maghreb
Mohammed V University, Rabat
E-mail: larabi@emi.ac.ma, www.emi.ac.ma/water

WSTA 12th Gulf Water Conference, Bahrain, 28-30 March 2017
OVERVIEW

- Introduction
- Climate Change (CC) Analysis
- Trends of CC in Morocco
- Modeling the Impacts of CC on Groundwater Resources (Downscaling and future projections)
- Coupling CC models with Classical Modeling
- Case Studies.
Key Elements for Decision Makers in Water Resources to build Strategies

- Water Budget based on Input and Output.

- These Input/Output are assessed based on physical parameters (stochastic/deterministic): P, T, Sea Level fluctuations…

- Due to Climate Change (CC), the mean values of these parameters are varying in time and space.

- Need to recalculate the Water Budget to assess the impact of CC for better Planning and Optimal Management.
Problems and Challenges for the Coastal Water Resources and Oasis Systems

- Dense Population installed in the coastal zones very close to rivers and seas;
- Available water resources are overexploited, including surface water & groundwater;
- High risk of Floods & Pollution from upstream
- Seawater intrusion in the coastal aquifers,
- Soil salinization,
- Climate Change: T_increase, P, ETR, Sea Level Rise
- Abandoned Farms and rural population
The MAGHREB-MEDITERRANEAN REGION

Challenges

- This region is more sensitive to climate change extremes. The coastal sites share common water management problems due to their overexploitation, fresh water pollution, sea level rise, seawater intrusion and land losses.

- Increased complexity of policy making in the Maghreb sites presents an ongoing challenge to managers.

- The main objective is to identify & quantify the impacts of climate change on water resources in coastal zones/oases, and how they imply, in turn, socio-economic vulnerability and sustainable development.
Observed Climatic Variations

Source: IPCC AR4
Maghreb belongs to the most important physical water resources scarcity area in the world, due to arid and semi-arid conditions.

Areas of physical and economic water scarcity in the world.
Rainfall -Ifrane (Atlas Mountains)

Source: DRPE
Statistical downscaling of precipitation for a region covering the western parts of Northern Africa shows rainfall increases in December/January of up to about 60 mm in the period 2071–2100 compared to the time period 1990–2019. The results are based on assessments of precipitation changes under the SRES B2 scenario assumptions using a statistical downscaling technique (canonical correlation analysis).

Source: Schilling J. et al.
Rainfall variation

The variation of rainfall is very important in time and space showing a clear decrease from the mountains to the plains and towards the desert zone in the south. The monthly values indicate a decrease over the last three decades after the most important intensity during the 1960’s. The variation shows a clear seasonal irregularity.
Temperature

The variation using 12-month moving average shows that the monthly values of the temperature indicate an increase during the last decades since the 1970’s.

The inter-annual evolution of T shows the same trend with strong increase in temperature. Mean annual temperature is plotted versus time. The solid black line represents a locally-weighted polynomial regression using kernel smoothing.

Figure 8.5. Seasonal variation of the monthly temperature in Agadir station: moving average.

Figure 8.6. Seasonal variation of the temperature in Agadir station: inter-annual trend evolution. The solid black line represents a locally-weighted polynomial regression using kernel smoothing.

Source: Bouchaou L.et al.
Impacts on groundwater level

The reaction of the water table to the rainfall recharge is very variable in space and time within the basin. The major trend indicates an overall decrease in water resources, due to the combination of the natural decreased recharge and human activities (extractions). This depletion affects directly the water availability in the Souss-Massa basin. According to water monitoring and simulation established by the hydraulic department, the scenario for the 2020 predicts a possible water crisis in the area.
Seawater intrusion in coastal aquifers (Souss and Martil aquifers)
Sea Level Rise due to CC and its impact

☑ Impact of CC on the Seawater intrusion interface in a hypothetical coastal aquifer: Natural conditions versus SLR and pumping?
Groundwater balance for the Ghiss-Nekkor aquifer in 2014

<table>
<thead>
<tr>
<th>Entrées (en Mm3/an)</th>
<th>Sorties (en Mm3/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apports latéraux</td>
<td>5.26</td>
</tr>
<tr>
<td>Infiltration des pluies</td>
<td>1.95</td>
</tr>
<tr>
<td>Apports des oueds</td>
<td>2.97</td>
</tr>
<tr>
<td>Retours des pompages agricoles</td>
<td>0.66</td>
</tr>
<tr>
<td>Total</td>
<td>10.84</td>
</tr>
</tbody>
</table>

Variation du Stock (en Mm3/an) : - 3.77 Mm3/an
Figure 1: Drainage Network

Figure 2: Location of the coastal aquifer

Catchment and aquifer systems
Visualization of Tmax at the closed node (août 1982)

Table 4: valeurs de la température maximale de la période août 1982 sous les trois MCR

<table>
<thead>
<tr>
<th>Models</th>
<th>Tmax value at the closed node (août 1982)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA4</td>
<td>25.12 °C</td>
</tr>
<tr>
<td>RACMO22T</td>
<td>28.22 °C</td>
</tr>
<tr>
<td>HIRHAM5</td>
<td>30.01 °C</td>
</tr>
</tbody>
</table>

Observation (August 1982) 27.85 °C

Example of visualization of Tmax with the 3 CRM (Août 1982)
Selected CRM Models to simulate (Tmax, Tmin, P)

- Statistical Analysis: Linear regression and Taylor Diagram

- Example of Results for Tmin in the Taylor Diagram

- Selected of the best CRM Models to simulate (Tmax, Tmin, P)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Modèle</th>
<th>RMSE</th>
<th>R</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tmin</td>
<td>RACMO22T</td>
<td>0.15</td>
<td>0.98</td>
<td>0.85</td>
</tr>
<tr>
<td>Tmax</td>
<td>RACMO22T</td>
<td>0.42</td>
<td>0.96</td>
<td>1.45</td>
</tr>
<tr>
<td>Pr</td>
<td>HIRHAM5</td>
<td>0.74</td>
<td>0.8</td>
<td>0.78</td>
</tr>
</tbody>
</table>
High fluctuation of Tmin (2050) which would increase indicating a local warming.

Tmin prediction (2050) with RACMO22T
Tmax would also increase with less fluctuation than Tmin.

Tmax prediction (2050) with RACMO22T
For both scénarios (RCP 4.5 ; RCP 8.5) P would decrease.

Prediction of precipitation (2050) with HIRHAM (rcp 4.5 & 8.5)
Coupling CC models with Classical Modeling:

- Tmean can be calculated, in addition to P and Sea Level Rise from circulation Models,

- The New Recharge can also be calculated taking into account CC,

- Use Classical Modeling,

- Application to Case Studies.
Case of the Loukkos basin (1)

Location map of the study area
Case of the Loukkos basin (2)

Monthly variation of temperature (1977 – 2000)

Monthly variation of precipitation (1963 – 2014)

Ombrothermic chart at Larache station (1977-2000) by Gaussen and Bagnouls (1952)

Monthly variation of natural recharge of aquifer Rmel-O. Ogbané calculated by Thornthwaite method (1948).
Seawater intrusion in the Rmel-O. Ogbane coastal aquifer was studied in terms of qualitative and quantitative aspects, under a distribution of salt concentrations values in the coastal area, ranging from sea salt (35 g/l) in red color and freshwater concentration which is almost 0 g/l in blue color. The seawater intrusion edge extended 2 Km in the bottom of the aquifer. The results showed also that seawater intrusion increased in 2000 in the northwestern sector (Fig.11), due to mainly to (1) Less recharge caused by CC and the recurrent droughts; (2) Overexploitation of groundwater by intensive pumping from a well field used for drinking water supply of the Larache city and rural areas.

Case of the Loukkos basin (3)
Regional Model to deal with Seawater Intrusion in Coastal Aquifers:

- **b) Distribution of Salinity for layer 2 (Scénario 1, 2020)**
- **c) Distribution of Salinity for layer 4 (Scénario 1, 2020)**
- **d) Seawater intrusion is more sensitive to the recharge and GW abstractions**
- **e) Predicted SWI Volumes**

<table>
<thead>
<tr>
<th>Année Scénarios</th>
<th>2004</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scénario 1</td>
<td>1.5068</td>
<td>1.248</td>
<td>0.790</td>
<td>0.4492</td>
<td>0.3905</td>
</tr>
<tr>
<td>Scénario 2</td>
<td>2.9996</td>
<td>3.754</td>
<td>4.545</td>
<td>4.7273</td>
<td>4.9428</td>
</tr>
<tr>
<td>Scénario 3</td>
<td>3.0139</td>
<td>3.814</td>
<td>4.786</td>
<td>5.0961</td>
<td>5.7462</td>
</tr>
</tbody>
</table>
L'image Landsat (spectral radiance of band 3) de la plaine de Tafilalet avec les différents points d'eau d'observation ou d'exploitation. La surface piézométrique de la nappe phréatique correspond à une période relativement humide (février 2011). Les tâches sombres au centre de la plaine sont des palmeraies. Les drains artificiels (Khettras) ont été aussi dressés à partir de l'image.

Exemple de données d'entrée au modèle numérique obtenues par modélisation géostatistique des données spatiales.

Base de données relationnelles de Tafilalet représentant les données disponibles et nécessaires pour le modèle hydrogéologique.
Piezometric Records and evolution for the Tafilalet aquifer-Droughts

Analysis of the piezometric graphs shows some fluctuations of great amplitude with periods of strong reductions of stored volumes (early 1960s, mid-1970s and 1980) and periods of natural replenishment of groundwater (the end of 1960s, 1970 and 1980).

The amplitudes of the interannual variations can reach 5m.

It is mainly the succession of dry periods causing the lowering of the piezometric level and the development of groundwater abstraction has not prevented the wound of water table in 2011.
Piezometric Records and evolution of Tafilalet aquifer - Droughts

Analysis of the piezometric graphs shows some fluctuations of great amplitude with periods of strong reductions of stored volumes (early 1960s, mid-1970s and 1980) and periods of natural replenishment of groundwater (the end of 1960s, 1970 and 1980).

The amplitudes of the interannual variations can reach 5m.

It is mainly the succession of dry periods (1954-2011) causing the lowering of the piezometric level and the development of groundwater abstraction has not prevented the wound of water table in 2011.
Le domaine modélisé correspond à la nappe alluviale du Quaternaire de la plaine de Tafilalet (y compris le Tizimi) couvrant une superficie de 637 km².

Maillage: un réseau de mailles carrées de 250m de coté. La zone modélisée est constituée de 7900 mailles, dont 10190 mailles actives.
Regional Model in Steady state (1960)

<table>
<thead>
<tr>
<th>Water balanc term</th>
<th>m³ yr⁻¹</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>lateral groundwater recharge</td>
<td>13942088</td>
<td>19.89</td>
</tr>
<tr>
<td>Infiltration from River flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltration from irrigation</td>
<td>56145480</td>
<td>80.11</td>
</tr>
<tr>
<td>Rainfall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional wells</td>
<td>6949252</td>
<td>9.92</td>
</tr>
<tr>
<td>Pumping wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khettaras</td>
<td>10767369</td>
<td>15.36</td>
</tr>
<tr>
<td>Tafilalet outflow</td>
<td>1968755</td>
<td>2.81</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>50401972</td>
<td>71.91</td>
</tr>
<tr>
<td>Total IN</td>
<td>70087568</td>
<td>100</td>
</tr>
<tr>
<td>Total OUT</td>
<td>70087344</td>
<td>100</td>
</tr>
</tbody>
</table>

Coupes transversales de la nappe à l’état du régime permanent.
Le Modèle simulé entre 1960 et 2011 est caractérisé par deux périodes de sécheresses.
Conclusions - Recommendations

Need of optimal IWRM:

- **Build series of underground dams** upstream of the Oasis ecosystems to recharge the aquifers and maintain the traditional drainage systems (Kettras, Aflaj),

- **Irrigation of the coastal areas** from surface water to mitigate seawater intrusion in the coastal aquifers,

- **Conjunctive use of conv. Water and Desalination water** in the coastal zones,

- **Participative water management** through a **contract concept**, including all the stakeholders for monitoring, exploitation & management.
THANK YOU FOR YOUR ATTENTION