

FUNDED BY:

Federal Ministry of Education and Research

Managed Aquifer Recharge: from Global Perspective to Local Planning

Dr. Catalin Stefan Head of MAR Research Group "INOWAS" Technische Universität Dresden, Germany

Attribute	Storage <u>above</u> ground	Storage <u>below</u> ground
Land area required	large	very small
Proximity to the city	far	within
Capital costs	high	low
Investigations costs	high	low
Intake and supply rate	high	low
Evaporation losses	moderate	low
Algal problems	moderate	low
Mosquitos	moderate	low
Mixing loses	none	none to high
Pathogen removal	some	substantial
Recontamination potential	moderate	none to moderate
Relief requirements	suitable valley	suitable aquifer

Source: adapted from Dillon et al., 2009

Stefan and Ansems, 2018 | http://marportal.un-igrac.org https://doi.org/10.1007/s40899-017-0212-6

MAR case studies by country

MAR historical development

MAR historical development

Main MAR types

- Spreading Methods
- Well, Shaft & Borehole Recharge
- Rainwater & Run-off Harvesting

Induced Bank Filtration

In-Channel Modification

Specific MAR types

Number of case studies

Types of water source for MAR

MAR objectives

MAR objectives vs. final water source

MAR beneficiary sector

Further readings

Sustainable Water Resources Management (2018) 4:153–162 https://doi.org/10.1007/s40899-017-0212-6

ORIGINAL ARTICLE

Web-based global inventory of managed aquifer recharge applications

Catalin Stefan¹ · Nienke Ansems²

Received: 30 October 2016 / Accepted: 18 December 2017 / Published online: 22 December 2017 \odot The Author(s) 2017. This article is an open access publication

Abstract

Managed aquifer recharge (MAR) is being successfully implemented worldwide for various purposes: to increase groundwater storage, improve water quality, restore groundwater levels, prevent salt water intrusion, manage water distribution systems, and enhance ecological benefits. To better understand the role of MAR in sustainable water management and adaptation to climate and land use change, about 1200 case studies from 62 countries were collected and analyzed with respect to historical development, site characterization, operational scheme, objectives and methods used, as well as quantitative and qualitative characterization of in- and outflow of water. The data harvested was used for the compilation of a global inventory of MAR schemes, whose main goal is to provide access to existing MAR projects and techniques and demonstrate their benefits. To increase the availability and facilitate continuous update of the MAR inventory, an MAR web-based portal was developed

Further readings

Hydrogeology Journal (2019) 27:1–30 https://doi.org/10.1007/s10040-018-1841-z

PAPER

Sixty years of global progress in managed aquifer recharge

P. Dillon^{1,2} • P. Stuyfzand^{3,4} • T. Grischek⁵ • M. Lluria⁶ • R. D. G. Pyne⁷ • R. C. Jain⁸ • J. Bear⁹ • J. Schwarz¹⁰ • W. Wang¹¹ • E. Fernandez¹² • C. Stefan¹³ • M. Pettenati¹⁴ • J. van der Gun¹⁵ • C. Sprenger¹⁶ • G. Massmann¹⁷ • B. R. Scanlon¹⁸ • J. Xanke¹⁹ • P. Jokela²⁰ • Y. Zheng²¹ • R. Rossetto²² • M. Shamrukh²³ • P. Pavelic²⁴ • E. Murray²⁵ • A. Ross²⁶ • J. P. Bonilla Valverde²⁷ • A. Palma Nava²⁸ • N. Ansems²⁹ • K. Posavec³⁰ • K. Ha³¹ • R. Martin³² • M. Sapiano³³

Received: 12 March 2018 / Accepted: 27 July 2018 / Published online: 7 September 2018 \odot The Author(s) 2018

Abstract

The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development of new technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume of MAR at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity of climate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research—on hydraulic design of facilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers—has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have

www.inowas.com

Ś Safari File Edit View History Bookmarks Develop Windov	/ Help		९ ≔
	inowas.hydro.tu-dresden.de	<u> </u>	
S HOME S DASHBOARD			🤱 Hey, Guest
	TOOLBOX		
Simple tools derived from data mining and em- pirical correlations	Practical implementation of analytical equa- tions of groundwater flow	Reliable simulations using comp flow models (i.e. MODFI	olex numerical LOW)
The applications are based on a collection of simple, po tion-sp	ractical and reliable web-based tools of various degrees ecific workflows or used as standalone modelling instru	of complexity. The tools are either incl ments.	uded in applica-
	EXAMPLES OF TOOLS		

T07. APPLICATION-SPECIFIC SCENARIOS ANALYZER

This tool makes use of the output files of the MODFLOW-based model and uses them for the customized analysis of user-defined model scenarios

Global MAR Portal

Web-GIS portal for visualization of MAR projects and suitability maps

Saltwater Intrusion Assessment

Interactive web-based implementation of analytical equations

MODFLOW-based Groundwater Modeling

3

Setup, calculation, optimization and visualization of MODFLOW models

		ModelMuse	Visual MODFLOW Flex	INOWAS
	www.inowas.com			
SPECS	MODFLOW code		\checkmark	
	Pricing model	free	9,000 USD	free
	Web-based interface	0	Ø	
	Multiple tools (over 20)	0	Ø	
FEATURES	Scenarios analysis	Ø	Ø	
	3D visualization	0		\bigotimes
	Shared models	0	Ø	
	Optimization algorithms	0	\bigotimes	
	Cloud-based scalability	0	Ø	
PACKAGES	Analytical equations	Ø	Ø	
	MODFLOW-2005		\checkmark	
	MT3DMS		\checkmark	
	SEAWAT	Ø	\checkmark	in progress
	MODPATH	\checkmark	\checkmark	\mathbf{O}

GIS-based MAR suitability mapping

Vasquez, 2017

Pivaral, 2016

www.ismar10.net

Acknowledgements

Managed Aquifer Recharge: from Global Perspective to Local Planning

Authors:

Catalin Stefan, Jana Glass, Jana Sallwey, Ralf Junghanns, Thomas Fichtner, Felix Barquero FUNDED BY:

Federal Ministry of Education and Research

Contact

ADDRESS

Technische Universität Dresden Department of Hydrosciences Pratzschwitzer Str. 15 01796 Pirna GERMANY

Dr. Catalin Stefan

Phone: +49 351 46344144 Fax: +49 351 46344122 Email: catalin.stefan@tu-dresden.de http://tu-dresden.de/uw/inowas https://www.inowas.com