

UNESCO Category II Regional Centre for Capacity Development And Research in Water Harvesting (RCWH-SUDAN)

Using Satellite Rainfall Data to Estimate Direct Flow

Mohamed Mustafa Abbas

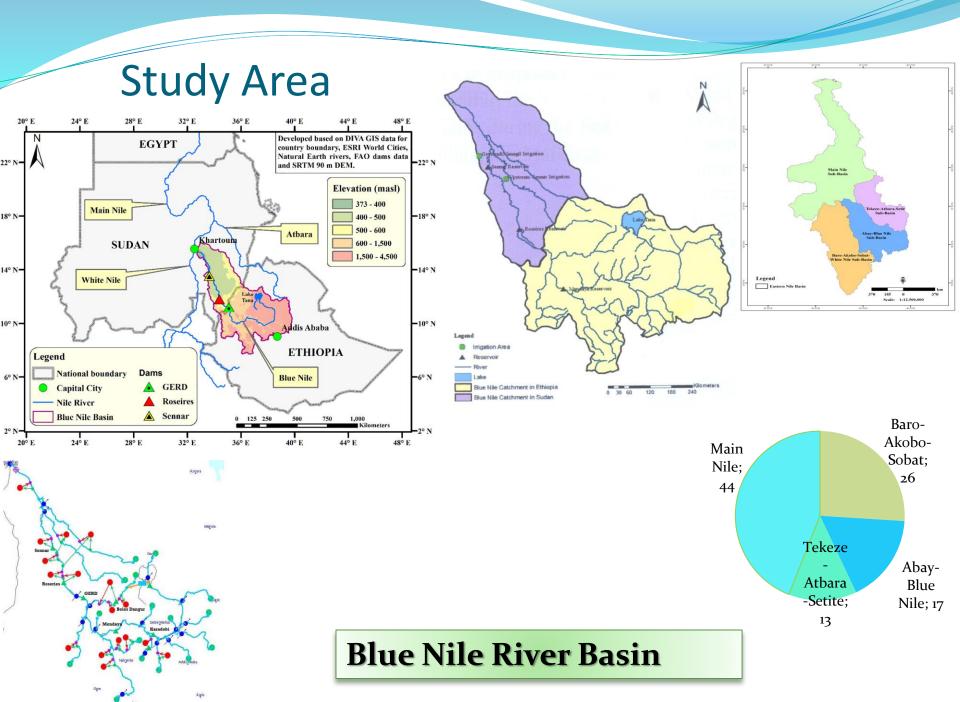
Capacity Development and Training Coordinator

UNESCO Category II Regional Centre for Capacity Development and Research in Water Harvesting

Overview

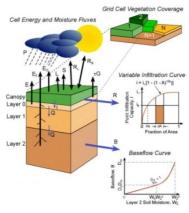
- Introduction
- Research Objectives
- Study Area
- Methodology
- Analysis
- Results
- Conclusion and Recommendations
- Final Remarks
- Acknowledgement

Introduction

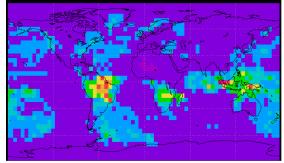

- As water is a resource which ignores political boundaries, fluctuates both in space and time, has different and conflicting demands on its use.
- The lack of a basin-wide agreement on water development projects poses a problem for both U/S countries (those concern of their development) and D/S countries (concern of their water security).
- A common challenge in modelling watershed hydrology is obtaining accurate weather input data.

Cont., Introduction

 The overall objective of this study is to contribute to the sustainable management of the BNRB through the establishment of a reliable data base hydrological and climatic information system.


Research Objectives

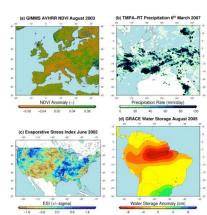
- Improve hydrologic prediction through development and refinement of hydrologic models and use of advanced observations, particularly from open sources.
- As to determine whether CFSR-derived rainfall data can be reliably used as input data instead of traditional rainfall station data in simulating discharge from a watershed.

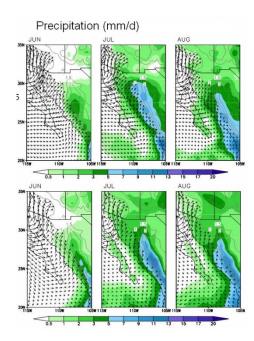

Data and Tools

Variable Infiltration Capacity - n Layer (VIC-nL) Macroscale Hydrologic Model

Hydrological Modelling

Regional/Global Climate Models

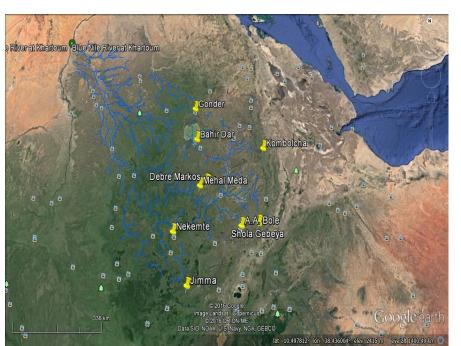

Ground Observations


Water Evaluation And Planning System

Copyright (c) 1990-2013, Stockholm Environment Institute

60%

Satellite Remote Sensing

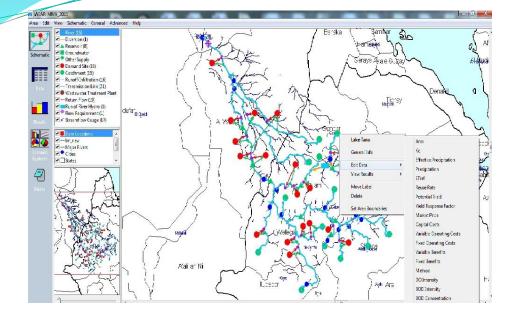

Reanalysis, Analysis

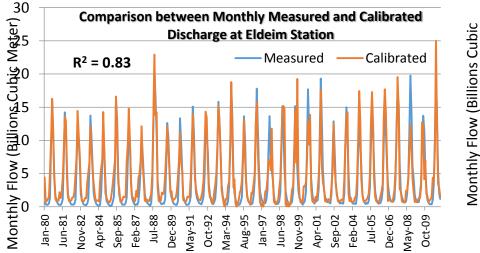
Methodology

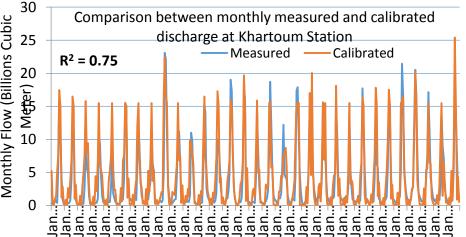
- This study presents a method for using the Climate Forecast System Reanalysis (CFSR) global meteorological dataset to obtain historical weather data and demonstrates the application to modelling 16 watersheds. CFSR data are available globally for each hour since 1979 at a 38-km resolution.
- Satellite rainfall data has been used to improve the quality of ground stations data (conventional data).

Cont., Methodology

 The satellite rainfall data for all Blue Nile subbasins were downloaded from satellite data from the CFSR in a monthly basis for the period 1980-2010, which was calibrated with the ground rainfall stations (1993-1999).

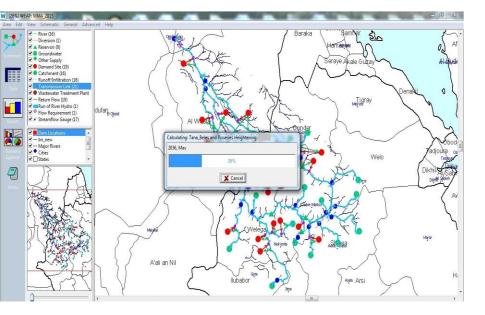

	Sub-basin	Longitude	Latitude	Elevation
١	Anger	87,0770	9,07791	101.
۲	Beles	80,9870	11,•A£1	٨٠٦
٣	Bosheilo	37,170	11,8975	۲۳۹۹
٤	Dabus	٣٥	9,07791	1577
٥	Didessa	87,70	٨,٨٩٨٥٢	1892
٦	Finchaa	۳۷,0	9,18081	1051
٧	Guder	۳۷,0	9,71.70	4.14
٨	Jemma	۳۸,۷٥	9,18081	1895
٩	Muger	37,2870	9,07791	7.74
۱.	N. Gojam	37,170	۱۰,٤٥٩٧	2022
11	S. Gojam	37,1270	۱۰,٤٥٩٧	1778
١٢	Tana	۳۷,0	18,.8.8	1725
١٣	Weleka	۳۸,۷٥	۱۰,٤٥٩٧	1770
١٤	Wonbera	80,780	۱۰,٤٥٩٧	1009
10	Dinder	80,8170	١٢,•٢•٨	078
١٦	Rahad	٣٤,٦٨٧٥	१९,४२९४	٤٣١

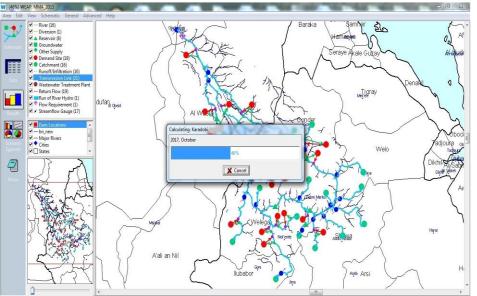

Analysis

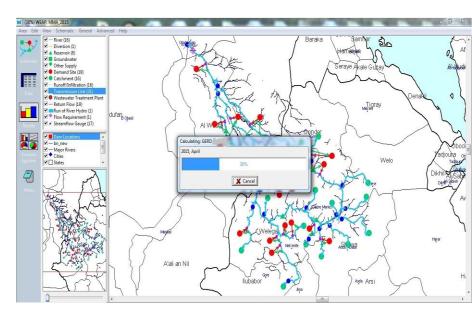

 The research used WEAP model ability to simulate runoff in the basin, the record was split into two parts. The data for the first 16 years (1980 - 1995) were used for calibration purposes and the second 15 years (1996 - 2010) for validation.

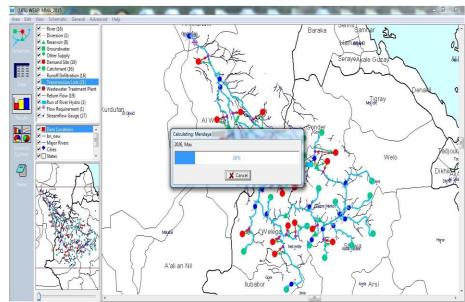
					Station	River	Nash-	Coefficient	Index of
Station	n River	Nash-Stucliffe	Coefficient of	Index of			Stucliffe Efficiency	of Determinati	agreement (d) %
		Efficiency (NSE) %	Determination (r2) <u>%</u>	<u>agreement</u> (<u>d) %</u>			(NSE) %	on (r ²) %	
Eldeim	Blue	89	95	97	Eldeim	Blue	80	90	95
	Nile					Nile			
Giwasi	Dinde r	96	98	99	Giwasi	Dinder	62	84	85
Hawata	a Rahad	88	95	97	Hawata	Rahad	86	93	96
Kharto	u Blue	67	88	92	Kharto	Blue	72	88	93
m	Nile				um	Nile			
Calibration (1980-1995)				Validation (1996-2010)					

Cont., Analysis

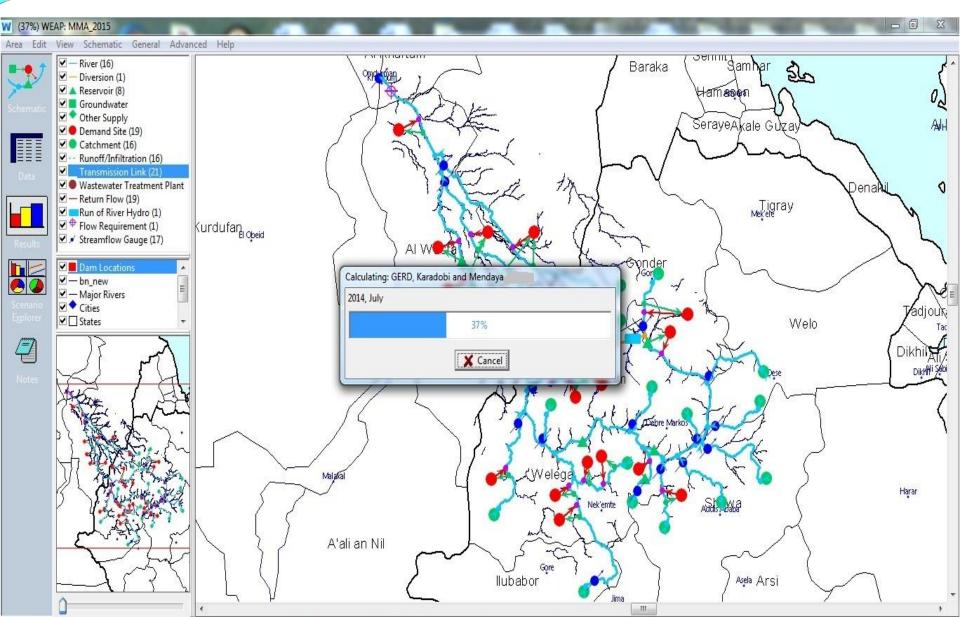





Comparison between monthly measured and calibrated discharge at Eldeim station


Comparison between monthly measured and calibrated discharge at Khartoum station

Cont., Analysis



Cont., Analysis

Results of WEAP Scenarios

Scenario	Scenario	Description
Number	Code	
Scenario 1	S – 1	This scenario considered construction of Tana-Beles and Roseries Dam Heightening (TBRDH), considering all projects in Current situation, for the period 2011-2016
Scenario 2	S-2	This scenario considered construction of Grand Ethiopian Resilience Dam (GERD), considering all projects in S-1, for the period 2017-2023
Scenario 3	S – 3	This scenario considered construction of Karadobi Dam with others future irrigation projects, considering all projects in S-2, for the period 2024-2030
Scenario 4	S-4	This scenario considered construction of Mendaya dam, considering all projects in S-2, for the period 2024-2030, as parallel scenario to S-3
Scenario 5	S – 5	This scenario considered construction of all projects in S-3 and S-4, for the period 2031-2040

Conclusion & Recommendations

- The satellite rainfall data for all Blue Nile sub-basins were downloaded in a monthly basis for the period 1980-2010 from the Global Weather Data website for the National Centers of the Environmental Prediction (NCEP) (www.globalweather.tamu.edu).
- The satellite rainfall data was modified with the actual measured rainfall from nearby gauge stations for the period 1993-1999 by using a weighting factor depending on the distance between satellite data.
- Using simplified rainfall-runoff relationship, the research obtained the runoff in monthly time steps for each Blue Nile sub-basins at its outlet utilizing the capability of (WEAP), which gives very close estimates.

Cont., conc. & reco.

 The research give an access and easy use of continues data by establishing of regional data base between the BNRB countries for better management and to understand the current demands for water resources projects as well as to plan for future water resources projects; which include Simulated of satellite rainfall data.

Final Remarks

 CFSR shows valuable results (rainfall-runoff) with high efficiency (92%) when comparing to the measured discharges in different measured stations, their for it could represent the actual situation especially in the remotely areas and absence of measured discharged.

Acknowledgements

 Co-authors, Prof. Abdin Salih; Dr. Adil Elkhider; Dr. Salih Hamid, for their valuable input and contribution to this research.

Thank you!

Mohamed M. Abbas (PhD,CE)

m-mustafa@unesco-rcwh.sd moh_abb@hotmaíl.com

