

Using Bayesian Networks (BNs) for Mapping Stakeholders Behaviours in Integrated Water Resource Management

with a Focus on Irrigated Agriculture in Al Batinah Region of Oman

Dr. Ayisha Mohammed Al Khatri Head of Water Statistics Section Ministry of Regional Municipalities and Water Resources

Overview

- Introduction (problem, objectives)
- Methods used
- Results & Discussion
- Conclusions
- Recommendations

Study is focusing on a real management problem of the coastal agricultural region in a part of South Al Batinah in Oman

Motivation and problem

Agricultural region \rightarrow problem of over abstraction of fresh groundwater for irrigation along the coast.

South Al Batinah agricultural area

Saline intrusion in coastal areas

Clarification by using the DPSIR framework South Al Batinah catchment basin - AGRICULTURAL sector

Complexity of the situation

A global solution is needed;

- The system need to be managed for the mean term and the long term
- Communications in both directions need to be improved:
 - Between relevant Decision makers
 - Between Decision makers and farmers

Objectives

- Introduce \rightarrow a participatory process within the frame of IWRM (to support DMs in taking more informed decisions).
- Explain the dilemma (common-pool resources dilemma) with respect to the behaviors of the stakeholders, & identify if the participatory approach is accepted or rejected.
- Identify ways to improve the probability of a specific intervention to be implemented, & with what factor this intervention is more likely to be implemented.
- Identify if model approaches can be used to predict future scenarios in a changing environment.

Methodology

Framework for the Assessment and Modeling of Stakeholder Participation

Methodology framework for human behavior and opinions in agriculture and water management for the Omani case, South Al Batinah

Methodology

Modeling with Bayesian Network

Used for mapping stakeholders' behaviors and to analyse the strength of a relationship between dependent and predictor variables.

Assume the events are A and B respectively, than

"the probability of A given B"

p(A|B)

Rule for Conditional Probability:

 $p(A|B)=p(B)p(A\cap B)$

A BN is a type of Decision Support System (DSS)

The basic idea of BNs is Probabilistic reasoning

p(A,B,C,D,E) = p(A) p(B) p(C/A,B) p(D,B) P(E/C,D)

Focus on water quota & the evaluation of implementation potential

Overview of the Survey

General specifications of the management interventions (18 items)

- Focus on water demand side measures to reduce water consumption → water quotas, and subsidies
- Focus on water resources side measures to increase the availability of water → climate conditions ,artificial recharge units

General Opinions of Farmers and DM's

Farmers \rightarrow likely to the solutions of increasing water availability especially of good water quality, while DM's \rightarrow likely to the management issues especially demand management.

Drivers behind Opinions - Frequency Curves (Farmers)

Score ranges between 1 for strongly agree and 5 for strongly disagree

% of farmers agreed & % of farmers rejected the idea of water quota with subsidies, is similar. Cross-tabulation + DA are performed to identify the parameters which might be the reason behind.

Results and Discussion **Discriminant Analysis (DA)**

List of Indicators

No.	Indicator	Туре
1	Age (A)	А
2	Farm size (fd)	А
3	Area used for agriculture (fd)	А
4	Area used for commercial (fd)	А
5	Salinity range (µs/cm)	A
6	Educational level	С
7	Level of cooperation with water	С
	related organizations	
8	Farm classification	С
9	Percentage of products sold	С

(A) continuous data and (C) categorical data, (fd) feddan

Used with mixed list of categorical and continuous data

Discriminant Analysis (DA) The suggested discriminators by Discriminant Analysis

Analysing options	No. of samples	Suggested discriminators	Canonical correlation		
Water quota					
Stepwise method	40	1. Salinity range	0.352		
Independents together method	40	 Level of cooperation with water Org. Salinity range 	0.516		
Water quota with equipment					
Stepwise method	40	No variables are qualified for the analysis			
Independents together method	40	 Level of cooperation with water Org. Area used for commercial Farm size 	0.448		
Water quota with guidance & training					
Stepwise method	40	No variables are qualified for the analysis			
Independents together method	40	1. Level of cooperation with water Org.	0.469		

Focus on water quota & the evaluation of implementation potential

Modeling with Bayesain Network

Manual step for determination of the variables and conditions

Modeling with Bayesain Network

The structure of the BN (The focus issue is Implementation of water quotas)

Modeling with Bayesain Network

The impacts of "Training" and "Subsidies"

General results from the BN model :

- The hypothesis for most of the variables worked logically.
- Impacts of the input variables on the (WQ) implementation potential were limited.
- Some variables (e. g. subsidies from the government) –are related to the adoption of WQ.
- If the BN is too big, there are no much effects on the output

Suggestions to improve the BN model :

- Ordering the variables is very important (e.g. cause should come before the effect).
- The number of nodes and arcs should be minimal as much as possible. It is good to have a higher number of samples and a simplified network.

Summary of Results

- Need of improvement and implementing new management strategies is supported by all groups of stakeholders.
- The idea of the participatory approach is not rejected by the different groups of stakeholders.

Conclusions

- The study underlines the importance of a participatory approach with contributions from all relevant stakeholders in order to achieve a real IWRM implementation process.
- Water management strategies should not only focus on the technical means, but should also be directed to improve management practices and social behavior changes.
- A coordinated response is needed between relevant organization, farmers as well as the media to help this message become part of local understanding.
- Level of trust between users and decision makers has an impact on the level of acceptance of farmers regarding implementing a particular intervention.

Recommendations

- Management interventions should be also evaluated regarding economic and environmental criteria.
- Assess the impacts of the implemented measures. This should be done with the help of models.
- Persuading farmers by incentives and subsidies.
- Continued stakeholder feedback.

Thank you

