

Improvement of water and energy use in sprinkler irrigation under semi-arid conditions

Samir Yacoubi

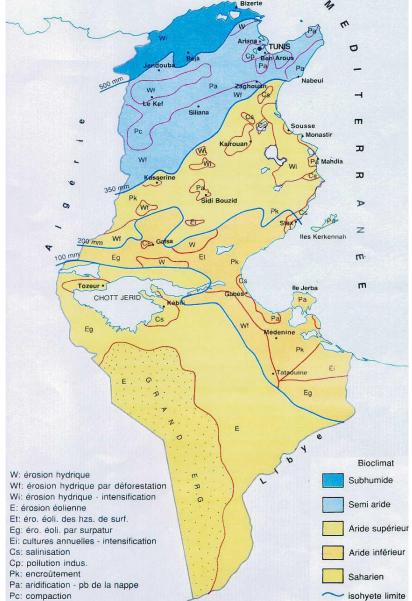
Associate Professor

National Research Institute for Rural Engineering,

Water and Forestry, INRGREF, Tunisia

Overview

- Irrigated agriculture in Tunisia
- Modernization of Irrigation
- Sprinkler irrigation: water-energy challenges
- Objectives
- Methodology
 - Evaluation of irrigation energy
 - Case studies
- Results
- Conclusion & Recommendations


Irrigated agriculture in Tunisia

Mediterranean climate

- Rainfall :
 - north: 500-1000 mm/year
 - center: 200-400 mm/year
 - south: less then 100 mm/year
- Vulnerability to climate change + recurrence of droughts periods

Limited water resources

- 385 m³/year per capita
- Surface water : 2,7 km³
- Underground water: 2,1 km³
- Nonconventional water: 0,240 km³

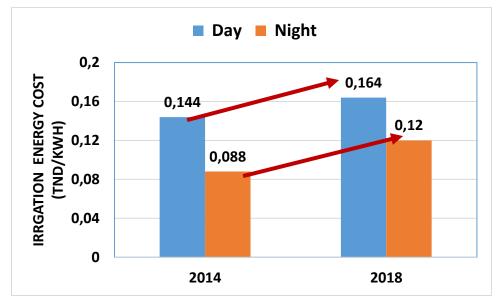
Irrigated agriculture in Tunisia

- Irrigated area of 450 000 ha (intensive)
 - 7% of the arable land
 - 36 % of total agriculture production
 - 27% of the workforce
 - 90% of vegetable production
- Irrigation consumes 2,08 km³/year ≈ 80% of the water resources
- Mobilization of water resources
 Water demand for irrigation
 Irrigated acreage

Adoption of irrigation water saving technologies

Modernization of Irrigation

National program for water conservation: improve irrigation efficiency


- Switching from surface to pressurized networks : additional costs of investment, pumping and maintenance
- Efficient management of energy resources : major concern to face increase in energy demand for irrigation

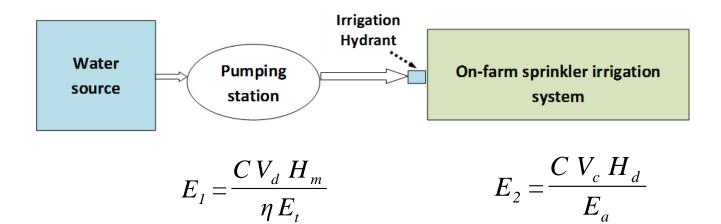
Sprinkler irrigation: water-energy challenges

- Sprinkler systems acreage: 114000 ha, 28.3% total irrigated area
- **Economic dilemma:** selection of the optimal depth to avoid:
 - under irrigation (yield decrease, soil salinization)
 - > over irrigation (water, yield and fertilizer losses, increase pumping costs)

(1TND≈0,33 USD)

- Limited research studies on water-energy nexus
- Increase of energy costs for irrigation

Objectives


 characterize and evaluate the energy requirements of sprinkler irrigation systems

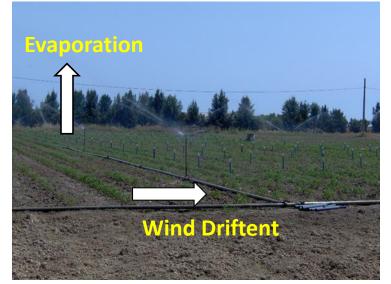
 investigate the impact of irrigation performance on energy consumption of sprinkler irrigation systems

Methodology

Evaluation of useful energy for irrigation: E (kWh)

 $E = Water supply energy (E_1) + Water distribution energy (E_2)$

- V_d: amount of irrigation water (m³)
- V_c: water available to the crop (m³)
- E_t : water supply efficiency (%),
- E_a : application efficiency (%), $E_a = 100 (V_c/V_d)$
- η : pumping efficiency (dimensionless)


Methodology

Case studies

Explore the impact of irrigation performances on the water distribution energy (E_2)

Potato crop

Tomato crop

Performance indicator parameters

Application efficiency, $E_a = 100 (V_c/V_d)$ Wind Drift and Evaporation Losses (%)

Impact of application efficiency on water distributed energy

Potato crop

Treatment	V _d (m³/ha)	Hd (m)	E _a (%)	E ₂ (kWh/ha)
Τ ₀	3200	36	81	314
T ₁	4300	36	69	422

- The low value of E_a with T₁ stems from the percolation losses estimated at 57 mm/yr
- Reduction in E_a from 81 to 69 % induces a substantial increase (34.4 %) of water distribution energy

Impact of application efficiency on distribution energy cost

Potato crop

Treatment	Yield (T/ha)			Water use efficiency (Kg/m ³)
Τ ₀	46.2	40.1	6.8	14.4
T ₁	50.7	53.9	8.3	11.8

- Energy distribution cost depends on the volume of applied water on the soil surface
- Reduction in E_a generates a relative increase of 22.4 % in the energy cost (kWh per ton) as well as a relative decrease of 18 % in the WUE

Tomato crop

Irrigation performances

	Day time	Night time
V _c (m ³ /ha)	5490	6417
E _a (%)	74.1	86.6
WDEL (%)	24	7
H _d (m)	35	35

- Night time improve irrigation performances:
 - Increase of application efficiency
 - Significant decrease in WDEL
 - Fair distribution of water

Tomato crop

Distribution energy cost

Irrigation time	Relative Yield Loss (%)	Distribution energy cost (TND/ha)	Energetic cost (kWh/T)
Day	11	90.2	14.4
Night	3	69.6	12.0

- By night time, energy cost was reduced by 22.8% although seasonal applied water was larger than for day time
- Adoption of night irrigation reduces the energy cost expressed in kWh/T by 16.4% compared with day time

Conclusion & Recommendations

- Energy and water saving can be achieved by :
 - improving irrigation efficiency
 - adopting proper irrigation management strategies: Night irrigation scenario
- Notwithstanding the changing from surface to pressurized systems (sprinkler), a saving of about 25% on the energy consumption can be achieved
- Under the arid and semi-arid local conditions, further investigations on technical and socio-economic implications of irrigation modernization need to be assessed at a larger scale (irrigation district) in order to improve water and energy efficiency

Credits and Acknowledgements

- Co-authors:
 - Adel Slatni, National Research Institute for Rural Engineering, Water and Forestry (INRGREF)
 - Ali Chebil, INRGREF
 - Khemaies Zayani, Ministry of Agriculture, Water Resources and Fisheries/ National Agronomic Institute of Tunisia (INAT), Tunis

Thank you for your Attention