



#### Extraction of Valuable Minerals from Reverse Osmosis Brine in Kuwait استخلاص العناصر القيمة من المحاليل الملحية المركزة الناتجة عن عمليات تحلية مياه البحر بالتناضح العكسي في دولة الكويت

## Mohammad Safar Water Research Center Kuwait Institute for Scientific Research

# Overview

- Introduction
- Experimentation
- Results & Discussion
- Conclusions & Recommendations
- Acknowledgements

Introduction



# Kuwait

Climate: Hyper arid

Rainfall: 110 mm/year

Surface water resources: none

Groundwater resources: negligible

# Most of Fresh Water Demands Provided by the Desalination of Seawater by Thermal or Membrane Technologies



#### Estimates of Distillation Plants, Kuwait Installed Capacity (MIGD) 2014 – 2018

| Station                      | Year  |       |       |       |       |
|------------------------------|-------|-------|-------|-------|-------|
|                              | 2014  | 2015  | 2016  | 2017  | 2018  |
| ª Shuwaikh                   | 49.5  | 49.5  | 49.5  | 49.5  | 49.5  |
| Shuaiba                      | 36    | 36    | 36    | 36    | 36    |
| Doha East                    | 42    | 42    | 42    | 42    | 42    |
| Doha West                    | 110.4 | 110.4 | 110.4 | 110.4 | 110.4 |
| <sup>b</sup> Az-Zour South   | 145.2 | 145.2 | 145.2 | 145.2 | 145.2 |
| Sabiya                       | 100   | 100   | 100   | 100   | 100   |
| Shuaiba North (G/T) Project  | 45    | 45    | 45    | 45    | 45    |
| CDoha (Stage I)              | -     | -     | -     | -     | 50    |
| <sup>d</sup> Doha (Stage II) | -     | -     | -     | -     | 50    |
| Total Installed Capacity     | 528.1 | 528.1 | 528.1 | 528.1 | 628.1 |
|                              |       |       |       |       |       |

<sup>a</sup> New seawater desalination plant (RO) having capacity of 30 MIGPD added to reach the total installed capacity of 49.5 MIGPD during 2011.

<sup>b</sup> It is expected to add seawater desalination plant (RO) plant at Az-Zour South station having capacity of 30 MIGPD during 2014 to reach the total installed capacity of 145.2 MIGPD.

<sup>c</sup> It is expected to add seawater desalination plant (RO) plant at Doha station (Stage I) having capacity of 50 MIGPD during 2017.

<sup>d</sup> It is expected to add seawater desalination plant (RO) plant at Doha station (Stage II) having capacity of 50 MIGPD during 2018.

Source: MEW, 2014

#### **Approximate rejected brine: 2500 MIGD**

Considered approximately 20% water recovery

Kuwait Water Production 11-3-2019

Capacity: 623 MIGD Production : 431MIGD 11-3-21019 Consumption : 400 MIGD 11-3-2019

## **Problem Statement**



#### characteristic of brine

- High total dissolved solids (TDS:~ 54,000 - 80,000 mg/L),
- High temperature than that of seawater in case of thermal sesalination

Brine disposal is a major problem for costal & inland desalination plants

# **Current Disposal Methods**

- Deep well injection;
- Irrigation of plants tolerant to high salinities;
- Disposal to municipal sewers;
- Evaporation ponds;
- Chemical treatment;
- Disposal into surface water bodies.

# Major Components In Seawater and

## **Desalination Brines**

| Parameter                                | Units                        | Arabian Gulf<br>Seawater | Arabian Gulf<br>Beach-well<br>Seawater | MSF<br>Brine | <b>RO Brine</b> |
|------------------------------------------|------------------------------|--------------------------|----------------------------------------|--------------|-----------------|
| рН                                       | -                            | 8.2                      | 7.13                                   | 8.67         | 7.56            |
| EC*                                      | mS/cm                        | 68.4                     | 66.6                                   | 101.3        | 78.5            |
| Ca <sup>2+</sup>                         | mg/l                         | 648                      | 1,080                                  | 996          | 1,276           |
| $Mg^{2+}$                                | mg/l                         | 1,676.7                  | 1,416.6                                | 2,258        | 1,733           |
| (SO <sub>4</sub> ) <sup>2-</sup>         | mg/l                         | 4,200                    | 3,900                                  | 5,700        | 4,500           |
| ( <b>HCO</b> <sub>3</sub> ) <sup>-</sup> | mg/l as<br>CaCO <sub>3</sub> | 180.8                    | 175.6                                  | 299.9        | 221.6           |
| Cl-                                      | mg/l                         | 26,100                   | 25,400                                 | 41,000       | 29,400          |
| Na <sup>+</sup>                          | mg/l                         | 16,925                   | 16,471                                 | 26,587       | 19,065          |
| TDS                                      | mg/l                         | 48,116                   | 47,843                                 | 75,370       | 55,866          |

## Harvesting Salts and Other Useful Products Many marketable mineral salts can be produced from reject

Many marketable mineral salts can be produced from reject brines such as [Howe, 2009]:

| $\checkmark$ | NaCl                                                | Mineral                         | Uses                                                                       |
|--------------|-----------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|
|              | KCl                                                 | NaCl                            | Textiledyeing,aquaculture,soilstabilization, and ice and snow removal      |
| $\checkmark$ | Na <sub>2</sub> SO <sub>4</sub>                     | Cl <sub>2</sub>                 | Polymers, plastics, and synthetic fibres                                   |
| ✓<br>✓       | K <sub>2</sub> SO <sub>4</sub><br>MgSO <sub>4</sub> | NaOH                            | Glass, rayon, synthetic fibres, plastics, polyester, soaps, and detergents |
| $\checkmark$ | $Mg(OH)_{2}$                                        | NaSO <sub>4</sub>               | Pulp and paper, dyes, and ceramic glazes                                   |
| $\checkmark$ | KNO <sub>3</sub>                                    | Na <sub>2</sub> CO <sub>3</sub> | Glass, pulp and paper, and rayon                                           |

 $\checkmark Na_2NO_3 and ... etc.$ 

# **Potential Products and Market Information**

| Product   | Chemical            |                                                       | Cont Prince(terr (2015)  |
|-----------|---------------------|-------------------------------------------------------|--------------------------|
| nam e     | composition         | Potential applications and end uses                   | Cost Price/ton (2015)    |
| Sodium    | NaC1                | Chlor-alkali, soda ash, food industries. Water        | 180 US\$                 |
| chloride  |                     | softening, de-icing road salt, glass, medicine,       | (Open pan salt)          |
| (Halite)  |                     | agriculture and firefighting.                         | 8.5 US\$ (Salt in brine) |
| Calcium   | CaSO <sub>4</sub>   | Cements, gypsum, glass, textile, plastics, paints,    | 9 US\$ (Mine)            |
| sulfate   |                     | tires and toothpaste.                                 | 28 US\$ (Plant)          |
| Magnesium | Mg(OH) <sub>2</sub> | Electronic devices, cars industries, alloys,          | 3,500 U S\$              |
| hydroxide |                     | refractory, agriculture, medicine, chemical,          | (free Market)            |
|           |                     | material construction industries and wastewater       |                          |
|           |                     | treatment.                                            |                          |
| Calcium   | CaCO₃               | Agriculture, construction as a building material,     | 116 US\$ (Quicklime)     |
| Carbonate |                     | medicine, iron industry, pH corrector, paints,        | 139 US\$                 |
|           |                     | ceramic and glass manufactures.                       | (Hydrate lime)           |
| Sodium    | $Na_2CO_3$          | Glass manufacture, food production, toothpastes,      | 290 US\$                 |
| Carbonate |                     | pulp, cotton industry and paper industries            | (Green River, USA)       |
|           |                     |                                                       | 138 US\$ (Mine)          |
| Lithium   | $Li_2CO_3$          | Batteries, industrial chemical, ceramic glaze,        | 6,600 U S\$              |
| carbonate |                     | medicines, plastics, lubricants and grease.           |                          |
| Potassium | K <sub>2</sub> O    | Fertilizers, alloys, catalysts and reducing agents in |                          |
| Oxide     |                     | organic synthesis.                                    | 8                        |

# Price of magnesium Oxide

ndustry grade Magnesium Dxide Price 20kg/bag White

US \$1100.0-1300.0 / Ton I Ton (Min. Order)

🔋 2<sup>YRS</sup> Hebei Meishen Tec...

🟮 | 💙 💙 | 🎝 74.1%



Magnesium oxide(MgO 80% 85%90%92%94%)

US \$200-1000 / Ton 20 Tons (Min. Order)

🖯 11 YRS Liaoning Tianci Fi...

🔰 | 🤿 💙 | 🖧 69.2%



Magnesium Stabilized Zirconia Powder/MgO stabilized

US \$10-20 / Kilogram 1 Kilogram (Min. Order)



| 📢 | 🖨 100.0%



Magnesium Oxide for livestock feed MgO 96% 95% China

US \$240-290 / Metric Ton 25 Metric Tons (Min. Order)





Industrial grade fertilizer water soluble best price ...

US \$180-350 / Metric Ton 20 Metric Tons (Min. Order)

5<sup>YRS</sup> Rs Maxunite Co., Ltd.

81.3%

# Case Study at KISR

#### Experimentation

#### **Sampling and Physicochemical Parameters Determination**

- Sample: Sample was collected from DRP which is located at Doha East Power Generation and Water Desalination Plant in Kuwait.
- Production Capacity: 300 m<sup>3</sup>/d. Total Water Recovery: ≈30%. Total Dissolved Solid (TDS) rejected from DRP plant: ≈54,000 ppm.

| Parameters / Unit            | seawater<br>Intake | SWRO brine |
|------------------------------|--------------------|------------|
| Alkalinity as CaCO3, mg/L    | 131.6              | 175        |
| Ammonia, mg/L                | <1                 | <1         |
| Barium, mg/L                 | <1                 | <1         |
| Boron, mg/L                  | 3.7                | 9.8        |
| Bromine, mg/L                | -                  | 0.02       |
| Calcium, mg/L                | 730                | 1,090      |
| Chloride, mg/L               | 24,876             | -          |
| Chlorine, mg/L               | -                  | 0.02       |
| Chromium, mg/L               | <0.01              | <0.01      |
| Copper, mg/L                 | <0.01              | <0.01      |
| Fluoride, mg/L               | 5                  | -          |
| Iodine, mg/L                 | -                  | 0.02       |
| Iron, mg/L                   | <0.01              | <0.01      |
| Lithium, mg/L                | -                  | 1.7        |
| Magnesium, mg/L              | 1,325              | 1,673      |
| Nitrate, mg/L                | 4.3                | -          |
| Phosphate, mg/L              | 0.2                | -          |
| Potassium, mg/L              | 316.4              | 997        |
| Sodium, mg/L                 | 14,488.5           | 17,905     |
| Strontium, mg/L              | 14.6               | 121        |
| Sulfate, mg/L                | 3,430.5            | 4,159      |
| Total dissolved solids, mg/L | 45,377             | 54,900     |



Figure 1. Flow diagram.

#### Experimentation







Figure 1. Experimental apparatus.

#### **Chemical Reactions**

RO brine  $(MX) + NH_4OH \longrightarrow MOH, M(OH)_2 + NH_3$ 

RO brine (MX) + NaOH MOH, M(OH)<sub>2</sub> + NaCl

Where MX: Mineral halide and sulphate.





#### **Effect of Base on Mineral Extraction (pH 9-Temp** 90 °C ) Selected Base: Ca(OH)<sub>2</sub>, NH<sub>4</sub>OH, and NaOH

#### Ca(OH)<sub>2</sub> as base

#### NH<sub>4</sub>OH as base



Percentage of minerals extracted.

#### **Extracted minerals:**

Boron: 36%, strontium: 25%, magnesium: 23% and sulfate: 11%.

#### **Extracted minerals:**

Boron: 41% strontium: 12%, magnesium: 6% and potassium: 6.

Percentage of minerals extracted.

#### **Effect of Base on Mineral Extraction**

#### 45 40 Calcium 35 Magnesium S 30 Sulfate 25 Extraction Boron 20 Strontium 15 Potassium 10 Lithium 5 Sodium 0

#### NaOH as base

Minerals

#### Percentage of minerals extracted.

#### **Extracted minerals:**

Boron: 40%, lithium: 38%, strontium: 23% and magnesium: 20%.

 NaOH is the best suitable base for extracting minerals from Kuwait SWRO brine (precipitation faster due to faster reaction and faster crystal growth of minerals in presence of NaOH)

#### **Effect of pH and Temperature on Mineral Extraction**

#### Extraction of minerals at 90 °C and at different pH



Total mineral extracted at different pH (mg/L) at 90 °C.

Magnesium: 1651 mg/L, sulfate: 700 mg/L and calcium: 168.8 mg/L.(ex.pH 10)

Percentage of minerals extracted at 90 °C.

Magnesium: 98%, Lithium: 78%, boron: 51%.(ex pH 10)

#### Effect of pH and Temperature on Mineral Extraction



Extraction of minerals at 80 °C and at different pH

Magnesium: 750 mg/L, sulfate: 300 mg/L and calcium: 144 mg/L.(ex pH 10) Boron: 71%, magnesium: 44%, strontium: 15% and calcium: 10%. (ex pH 10)

#### **Results and Discussion** Effect of pH and Temperature on Mineral Extraction

#### Extraction of minerals at 70 °C and at different pH



pH (mg/L) at 70 °C.

Magnesium: 1193 mg/L, sulfate: 200 mg/L and calcium: 120 mg/L.(ex pH 10) Boron: 71%, magnesium: 70%, strontium: 15% and calcium: 10%.( ex pH 10)

#### **Effect of pH and Temperature on Mineral Extraction**

#### Extraction of minerals at 60 °C and at different pH



pH (mg/L) at 60 °C.

Magnesium: 809 mg/L, Sulfate: 200 mg/L and calcium: 144 mg/L.(ex pH 10)

Boron: 77% and magnesium: 48% (ex pH 10),

Lithium: 61% (ex pH 8)

#### **Effect of pH and Temperature on Mineral Extraction**

#### Extraction of minerals at 50 °C and at different pH



Magnesium: 1095 mg/L, sulfate: 100 mg/L and calcium: 68 mg/L.(ex pH 10)

Boron: 73%, magnesium: 65%, and calcium: 6%.(ex pH 10)

#### Preliminary Economic Evaluation of Magnesium Oxide Production Using DRP SWRO Brine

Production Capacity:  $300 \text{ m}^3/\text{d}$ . Total Water Recovery:  $\approx 30\%$ . TDS rejected from DRP plant:  $\approx 54,000$  ppm.

Rejected brine is approximately 700 m<sup>3</sup>/d Amount of magnesium present: 1,771 kg per day and 646 ton/year. Based on our study: Extracted magnesium using NaOH as base at 90 °C and pH 10 is  $\approx$  633 ton/year.

Theoretically, 1 gm of magnesium (Mg) can produce 1.658 gms of magnesium oxide (MgO) (MgO) The total amount of magnesium oxide (MgO) that can be produced per year from DRP SWRO brine is 1000 ton/year.

Considering the market price of MgO at (800-2,500) USD per ton, the annual benefit that can be achieved by extracting MgO from DRP SWRO brine is 800,000 USD per year.

## **Conclusion & Recommendations**

- The mineral extraction from actual SWRO brine was conducted using chemical precipitation process,
- Mineral extraction capability of three different inorganic base was studied,
- The study proved that NaOH is the best suitable base for extracting minerals from Kuwait SWRO brine
- The effect of pH and temperature was conducted for maximum mineral extraction,
- The mineral extraction results showed that there is change in total concentration of extracted mineral with increase in temperature from 50 °C to 90 °C as well as with increase of pH from 8.0 to 10.0,

# **Conclusion & Recommendations**

- The extracted minerals are magnesium, lithium, boron, sulfate, and calcium,
- The economic gains obtained by extracting minerals depend mainly on the concentration of minerals in brine, the market price of these minerals, the recovery of the extraction and the purity of the mineral extracted.

# Acknowledgements

The authors would like to acknowledge Kuwait Foundation for the Advancement of Sciences (KFAS),
Kuwait Institute for Scientific Research (KISR), Water Research Center (WRC) for the financial and continue support for conducting this research.

# Thank you