Assessment of Performance Recently Developed Acriflavine Thin Film Composite Nanofiltration Membrane for Seawater Treatment and RO Brine Concentration

B. Garudachari
Assistant Research Scientist
Water Research Center
Kuwait Institute for Scientific Research (KISR), Kuwait
Contents

- Introduction
- Experimentation
- Results and Discussion
- Conclusions
Seawater covers over 75% of the Earth’s surface.

As global population grows to over 6 billion by 2050, the ultimate source of sustainable potable water is DESALINATION.
Introduction

The membrane can be described as “interphase between two adjacent phases acting as a selective barrier, regulating the transport of substances between the two compartments.”

The driving force:
- Pressure gradient ΔP
- Concentration gradient ΔC
- Electrical potential gradient ΔE, or a temperature gradient ΔT.
Application of Membrane Technology

- **Life**: Purifying water, Manufacturing salt from sea water
- **Environment**: Sewage disposal, Re-use by removal of unnecessary material
- **Factory**: Gas separation, Semiconductor, Electronic paint coating
- **Energy**: Fuel cell, Nuclear power plant, Hydrogenous production
- **Foods**: Dairy product, Protein elimination from honey, Condensed fruit juice
- **Health**: Artificial dialysis, Artificial muscle, Artificial lungs, Medical water

Diagram showing the applications of membrane technology in various sectors.
Types of membranes

- Reverse Osmosis:
 - Desalination of seawater
 - Hemodialysis
 - H₂O, Ions, Serum Albumin

- Nano-Filtration:
 - Water purification
 - Colloidal silica, Viruses

- Ultra-Filtration:
 - Wine

- Micro-Filtration:
 - E. coli, Bacteria

Small molecular ions: 10⁻¹⁰ to 10⁻⁹
Colloids: 10⁻⁸ to 10⁻⁷
Small particles: 10⁻⁶ to 10⁻⁵
Size of substances to be filtered out [m]
Good membrane material and characteristic

- Polysulfone (Psf)
- Cellulose Acetate (CA)
- Poly(acrylonitrile) (PAN)
- Poly(vinylidene difluoride) (PVDF)

- **Film forming** nature.
- **Mechanical strength** to overcome high pressure during performance.
- **Thermal stability** i.e. Glass transition temperature (tg) of the polymer should be higher than the process temperature.
- **Chemical stability** i.e. Resistance of the polymer at extreme pH values and other chemical conditions.
- **Hydrophilicity-hydrophobicity balance** in order to achieve better flux, low fouling.
Membrane Fouling

Fouling may be due to
- adsorption
- pore-blocking
- concentration polarization
Assessment of Performance Recently Developed Acriflavine Thin Film Composite Nanofiltration Membrane for Seawater Treatment and RO Brine Concentration
The chemical reaction of acriflavine and Trimesoyl chloride

TEA: Triethylamine
The reaction mechanism of interfacial polymerization of acriflavine and trimesoyl chloride monomer.
Characterization

FT-IR spectra of acriflavine, PSf, TFC, and TiO₂TFC

¹H NMR spectra of acriflavine and TFC Polymer
Preparation of PSf Substrate and Acriflavine Thin Film Composite (TFC) Membranes

Substrate membrane was prepared by Immersion precipitation method.

- Preparation of Acriflavine Thin Film Composite (TFC) Membranes

- 2 Wt % of acriflavine was dissolved in DI water and added 1.1 eq of triethyl amine (TEA),
- 0.01, 0.05 and 0.1 Wt% of TiO2 nanoparticles were dispersed in acriflavine aqueous solution,
- 0.1 Wt% of Trimesoyl chloride (TMC) was dissolved in hexane,
- nanoparticle-dispersed acriflavine solution was poured and kept for two min to penetrate solution to pores of the substrate,
- The excess solution was drained off,
- 0.1 % Wt% TMC solution in hexane was added and kept for one min to interfacial polymerization, then TMC solution was drained off,
- The unreacted TMC was removed by hexane washing and kept inside the oven at 60 ℃ for 10 min to complete polymerization.

<table>
<thead>
<tr>
<th>SL No</th>
<th>Code</th>
<th>Acriflavine Wt%</th>
<th>Trimesoyl chloride Wt%</th>
<th>TiO2 Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TFC1</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>TFC2</td>
<td>2</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>TFC3</td>
<td>2</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>TFC4</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Characterization

The magnified surface, cross-sectional FESEM images of TFC 4
The three-dimensional AFM images of; a) TFC 1, b) TFC 2, TFC 3 and c) TFC 4
Nano filtration performance study

The pure water flux of the membranes at 0.9 MPa pressure

The water flux of the TFC 4 membrane at 0.9 MPa pressure for AGS and RO brine feed
Nano filtration performance study

Physicochemical parameters of permeate water and reject from the desalination of AGS and RO brine

<table>
<thead>
<tr>
<th>Parameters / Unit</th>
<th>AGS Acridine TFC membrane Permeate</th>
<th>AGS Acridine TFC membrane Reject</th>
<th>RO brine Acridine TFC membrane Permeate</th>
<th>RO brine Acridine TFC membrane Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (mS/cm)</td>
<td>0.027</td>
<td>62.856</td>
<td>0.071</td>
<td>85.11</td>
</tr>
<tr>
<td>Magnesium, mg/L</td>
<td>3.8</td>
<td>2.039</td>
<td>197</td>
<td>3.013</td>
</tr>
<tr>
<td>Calcium, mg/L</td>
<td>6.0</td>
<td>1.006</td>
<td>407.2</td>
<td>1,507</td>
</tr>
<tr>
<td>Sodium, mg/L</td>
<td>12,051</td>
<td>13,316</td>
<td>12,051</td>
<td>30,520</td>
</tr>
<tr>
<td>Potassium, mg/L</td>
<td>100</td>
<td>340</td>
<td>688</td>
<td>1,223</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>20,230</td>
<td>26,086</td>
<td>41,176</td>
<td>68,603</td>
</tr>
<tr>
<td>Sulfate, mg/L</td>
<td>3.9</td>
<td>6,433</td>
<td>6.84</td>
<td>21,704</td>
</tr>
</tbody>
</table>

Percentage salt rejection

![Percentage salt rejection graph](image)
Conclusions

- The TiO$_2$ nanoparticle incorporated acriflavine TFC membranes were fabricated on PSf support by IP method,
- The TFC membranes were characterized using FT-IR, NMR, AFM, and FESEM,
- The addition of TiO$_2$ nanoparticle in acriflavine TFC active layer improved the morphology of the membrane and contact angle,
- The membrane with 0.1 wt% TiO$_2$ nanoparticle content achieved water flux of 67.1 LMH against deionized water, and 53 LMH and 44.5 LMH against Arabian Gulf Seawater and Reverse Osmosis brine respectively,
- The acriflavine TFC membranes showed excellent antifouling characteristics and rejection > 99% for magnesium (Mg$^{2+}$), calcium (Ca$^{2+}$), and sulfate (SO$_4^{2-}$) ions,
- The study concluded that TiO$_2$ nanoparticle incorporated acriflavine TFC membranes are having the high capability of rejecting divalent ions and suitable for desalination pre-treatment and RO brine concentration applications.
Thank you