

The potential of water reuse in the Arab region as a management option for water security under climate change condition

Pr. Redouane Choukr-Allah Head salinity & Plant Nutrition Laboratory IAV Hassan II, Morocco redouane53@yahoo.fr

Some key questions

Why is Wastewater Reuse Important for Arab Countries? And what are the Constraints?

How to make wastewater recycling sustainable?

Water issues in the Arab countries

- All Arab countries are below the level of severe water scarcity since 2015 with fragile ecosystems under multiple stress
- 40 percent of the Arab population is already living in conditions of absolute water scarcity
- Agriculture water Share 85% of available water resources
- There is a need for the mobilization of non conventionnel water, particularly wastewater resources

Wastewater Reuse in Arab Countries

 $10^9 \text{ m}^3/\text{year}$ 256.3 300 250 200 150 100 14.81 7.7275 50 3.4839 0 Total water Volume of treated Treated Total wastewater withdraw produced wastewater wastewater reused

Total water withdrawal , raw wastewater treated wastewater and reused treated wastewater in the Arab countries in 10⁹ m³/year (FAO-AQUASTAT 2014)

WASTEWATER REUSE IN THE ARAB REGION

Total use estimated at 3.4839 km³ per year

Egypt, by far, largest user with over 70% of region Direct reuse being introduced at Aqaba, Wadi Musa, Irbid in Jordan

Syria, Tunisia, are other top users

Wastewater Reuse in Arab Countries

Share of Wastewater That Is Reused versus Share That Is Treated

Wastewater Reuse in Arab Countries

Share of Collected Wastewater That Is Untreated, Treated, and Reused in Irrigation

Share of Collected Wastewater That Is Untreated, Treated, and Reused in Irrigation

Source: World Bank, using data from FAO AQUASTAT (database).

Arab World 2014

Why Treated Urban Wastewater

Compared to desalination, it is a cost-effective and energy saving to increase water supply and mitigate the impact of climate variability and climate change

Reuse of treated wastewater means making a productive asset out of a waste production from which it is possible to recover heat, energy, nutrients and clean water (aqua environment

Different reuse opprtunities with social, economic and environmental values

Why is Wastewater Reuse Important for Arab Countries?

Country Refer: adapted from 4,5	Type of Reuse
Egypt	Agriculture (direct forage and trees, indirect vegetables)
Jordn	Agriculture (direct forage and trees, indirect vegetables)
Lebanon	Agriculture Forages
Morocco	Golf courses and Phosphate Industry
West bank	Agriculture
Syria	Agriculture
Tunisia	Irrigation of green areas, Agriculture, Wetlands
Yemen	Agriculture
UEA	Green space irrigation

Reuse of wastewater in the Arab region

- Reuse options are manifold and strongly depend on a country's economic structure.
- Agriculture plays a major role for reuse in Jordan, Egypt,
- Green space irrigation in urban centers and tourist facilities is the focus of United Arab Emirates, Tunisia and Morocco.
- wastewater is "lost" as outfall to the sea. Particularly Morocco (60%), Lebanon (80%)
- Increased acceptance and reliance on reclaimed water will play a key role in mitigating the impacts of global climate change

Wastewater Technologies used in Arab Countries

Country Ref; 1-13	Degree of Treatment	Treatment Techniques Employed
Egypt	P, S	AS, OD, TF, and WSP
Jordan	S, T	AS, TF, WSP, EA, and anaerobic sludge digesters
Morocco	P,S,T	Natural lagoons, AL, TF, AS, and WSP
Lebanon	P,S	Settling tanks and AS
Syria	S	AS, Wet Land, Oxidation ponds, and AL
Tunisia	S, T	AS, OD, WSP, AL, and TF
Yemen	S	WSP, settling/Imhoff tanks (predominant), AS, TF, and EA
UEA	S,T	AS and SF
Kuwait	Т, А	AS, OD, SF, DF, UF, and RO
Algeria	S	AS, WSP, AL, SF, reed bed sewage treatment, and garden filter
Bahrain	S,T	AS, SF, RBC, AL
Oman	S, T	AS, WSP, RBC
KSA	S, T	AS, WSP, T,F
Sudan	P,S	WSP, AS

P: Primary, S: Secondary, T: Tertiary, A: Advanced

AL: Aerated Lagoons, WSP: Waste Stabilization Ponds, TF: Trickling Filters, SF: Sand Filtration, AS: Activated Sludge, OD: Oxidation Ditches, UF: Ultra Filtration, RO: Reverse Osmosis, DF: Disc Filtration, RBC: Rotating Biological Contactors, EA: Extended Aeration

TYPE OF TECHNOLOGIES IN ARAB REGION

TYPE OF TECHNOLOGIES IN ARAB REGION

Riqqa Activated sludge

AI Khiran STP

Sulaibiya Advanced

Jahra STP

VOMLUMES OF TREATED WASTEWATER BASED ON THE TYPE OF TECHNOLOGY IN MOROCCO

Activated sludge

- Activated sludge + tertiary treatment
- Aerated lagoons
- Aerated lagoons + chlorination
- Constructed wetlands
- Infiltration percolation

Main constraints of Reclaimed Wastewater Reuse

Safety Control & Risk Management

- Unfortunately, in many Arab countries that are already using or start using treated wastewater, the monitoring and evaluation programs are not well developed
- Poor monitoring of performing parameters serious negative impacts on health, water quality and environmental and ecological sustainability

Wastewater Quality

- Quality parameters are set in most of the Arab countries, however only few have the capacity and means to meet these standards.
- Jordan implemented a safety control system for agricultural produce grown on a mix of treated wastewater and freshwater
- Salt content of industrial effluents jeopardizes and efficient reuse in irrigation water

Clogging of sprinklers in the Golf of Agadir

WASTEWATER REUSE GUIDELINES

	E. Coli Or Fecal Coli /100ml	Nematode eggs/l	Other ¹ parameters	Crops eaten uncooked is allowed	Code of practice
WHO	1000	<]	No	Yes	Yes
Jordan	100	<=]	Yes	No	Yes
Morocco	1000	Absence	Yes	Yes	No
Palestine	1000	<1	Yes	No	Yes
Syria	1000	<1	Yes	No	Yes
Tunisia	-	<1	Yes	No	Yes
Kuwait	20	<1	Yes	No	Yes
Oman	200	<1	Yes	Yes	
Saudi Arabia	2.2	<1	Yes	No	Yes
Yemen	No specific st	tandard			
Egypt	Decree 44/2000, b standar	out no specific rd			

SUCCESSFUL STORIES FOR THE REUSE

Case of Reclaimed Wastewater Reuse in Marrakech

Use of treated wastewater for Forest development in Egypt El-alaky, Aswan (Castor, Khaya, Jatropha, Gogopa)

Jatropha: haute rendement par l'utilisation des eaux usées

GROUDWATER RECHARGE

Planning for Wastewater Reuse

- The formulation of realistic, economically feasible, safe and socially acceptable set of standards and regulations is very essential
- Codes of practices for sustainable use are also crucial
- Policies accompanied by national strategies for wastewater reuse are preconditions to success
- Many different stakeholders are involved and it is very crucial to allocate responsibilities in both treatment and reuse stages
- The choice of an adequate technology should be based on an integrated assessment of the local technical, environmental and social aspects

Lessons learned and recommendations

Need to integrate water quality in wastewater reuse

Strengthen existing networks and institutionsImplementation of strategy and policy to promote reuse

- Strengthening Public Private Partnership

Lessons learned and recommendations

Selection of treatment system based on the type possible reuse Emerging contaminants, are becoming a concern for environment protection and health

Need to diversify different reuses

• Cost-benefit analysis should include socio-economic and environmental aspects

Constant dialogue between all relevant partners
Capacity-building and sharing knowledge

Thank you

Pr. Redouane Choukr-Allah Head salinity & Plant Nutrition Laboratory, IAV Hassan II, Morocco redouane53@yahoo.fr