بسم الله الرحمن الرحيم

Exploring of Deep Groundwater in the Southwest Aquifer of Qatar

Mohamed Shamrukh, Abdulaziz A. Al-Muraikhi, and Yousef I. Al-Hamar

Presented by Prof. Mohamed Shamrukh Expert of Water Resources, Dept. of Water Management

Outline

- Background
- Objectives
- The project
- Results
- Aquifer Evaluation
- Conclusions

Qatar faces the following problems in Water:

- Eimited traditional water resources
- 8 Water resources are limited renewable
- 8 Increasing the salinity of groundwater
- Bigh rate of water demand (domestic, agriculture, industry)
- 8 High drinking water demand with significant water loss
- 8 There is significant quantity of unused treated wastewater

- The mentioned situation has driven the Department of Water Management (MoE) to adopt the concept of :
 - Integrated Water Resources Management (IWRM)

This includes maximizing of water resources in Qatar exploring the:

- groundwater of deep aquifer
- fresh water underneath the marine water

Mohamed Shamrukh Ministry of Environment

Objectives

- ✓ Characterize the deep aquifer, Aruma
- Determine the quality and quantity of the deep groundwater
- Evaluate the pumping rate and the suitability for drinking and agriculture use

The Project

• Drilling (4) deep wells (630 – 730 m), total 15 wells:

location is Aruma aquifer southwest Qatar

Geophysical measurements

groundwater level, stratigraphic (type and thickness)

Well tests

hydrogeological properties (K, T, S)

Water quality

physical and chemical

Mohamed Shamrukh Ministry of Environment

Project location

Results

Top elevation of Aruma Aquifer related, mean sea level (msl)

-260 -300 -340 -380 -420 -460 -500 -540 -580

Mohamed Shamrukh Ministry of Environment

Results

Piezometric head, Aruma Aquifer related, mean sea level (masl)

Results, aquifer properties

Constant rate tests for Aruma aquifer

Well No.	Duration of Constant Rate Test	Discharge	Hydraulic Calculati	ons		Aquifer Thickness	Estimated Permeability
DW-12	912 minutes	10.9 Vs	Pumping well: Obs. Well:	$T = 51 m^{2}/day$ $T = 68 m^{2}/day, S = 0.00005$ $T = 65m^{2}/day, S = 0.00006$ $T = 66 m^{2}/day$	(Jacob-Cooper Analysis) (Thies Analysis) (Recovery Analysis)	135 m	0.37 m/day
	585 minutes	10.7 l/s	Pumping well: Obs. Well:	$T = 61 m^{2}/day$ $T = 69 m^{2}/day, S = 0.00005$ $T = 50m^{2}/day, S = 0.00007$ $T = 65 m^{2}/day$	(Jacob-Cooper Analysis) (Thies Analysis) (Recovery)		
	8632 minutes	10.9 l/s	Pumping well Obs. Well:	$T = 50 \text{ m}^2/\text{day}$ $T = 65 \text{ m}^2/\text{day}, S = 0.00005$ $T = 52\text{m}^2/\text{day}, S = 0.00008$ $T = 67 \text{ m}^2/\text{day}$	(Jacob-Cooper Analysis) (Thies Analysis) (Recovery)		
DW-13	6665 minutes	16.2 l/s	Pumping well: Obs. Well:	$T = 36 \text{ m}^2/\text{day}$ $T = 38 \text{ m}^2/\text{day}, S = 0.00015$ $T = 45\text{m}^2/\text{day}, S = 0.00016$ $T = 36 \text{ m}^2/\text{day}$	(Jacob-Cooper Analysis) (Thies Analysis) (Recovery)	132 m	0.30 m/day
DW-14	840 minutes	11.5 V/s	Pumping well:	$T = 29 m^2/day$	(Jacob Cooper Analysis)	155 m	0.20 m/day
	2880 minutes	11.6 l/s	Pumping well:	$T = 30 \text{ m}^2/\text{day}$	(Jacob Cooper Analysis)		
DW-15	2928 minutes	16.2 l/s	Pumping well:	$T = 47 \text{ m}^2/\text{day}$	(Jacob Cooper Analysis)	147 m	0.31 m/day

Results, constant rate pumping

Table 5.1: Projected drawdown at test sites due to continuous pumping

Well No.	Test Discharge (litres/second)		Projected drawdown due to continued pumping (metres)					
		24 hour	10 days	30 days	300 days	1000 days		
DW-12	10.9	40.5	44.5	46	49	51	65	
DW-13	16.2	111	119	122	129	133	38	
DW-14	11.6	99	106	109	114	118	29	
DW-15	16.2	71	78	80	85	88	47	

Results, water quality

Well No.	DW - 12	DW - 13	DW - 14	DW - 15
Date	May 2003	March 2003	June 2003	June 2003
Field Measurements				
EC (micromhos/cm)	8510	7220	7160	5360
PH (units)	7.45	7.44	7.44	7.33
Temp deg C	44.9	46.4	47.2	47.9
H2S (mg/1)	>2<5	>2<5		
Laboratory Analysis				
Calcium (mg/1)	105	110	100	80
Magnesium (mg/1)	55	61	49	42
Sodium (mg/I)	1688	1398	1360	980
Potassium (mg/1)	102	82	82	62
Manganese (mg/1)	0.009	0.03	<0.001	< 0.001
Carbonate (mg/1)	Absent	Absent	Absent	Absent
Bicarbonate (mg/1)	351	329	305	311
Sulphate (mg/1)	346	345	325	329
Chloride (mg/1)	2552	2127	2092	1453
Nitrate (mg/1) as NO3	<0.1	<0.1	<0.1	<0.1
Alkalinity (as CaCo3) P (mg/1)	Absent	Absent	Absent	Absent
Alkalinity (as CaCo3) Mo (mg/1)	288	270	250	255
Total Hardness (as CaCo3) (mg/1)	488	525	450	375
Carbonate Hardness (mg/1)	263	270	250	200
Non-Carbonate Hardness (mg/1)	225	255	203	173
Total Iron (mg/1)	0.50	0.93	<0.01	< 0.01
Nitrite (mg/1)	< 0.001	<0.001	<0.001	< 0.001
Nitrogen-Ammonia (mg/1)	3.4	2.7	3.5	3.4
Orthophosphate (mg/1)	0.04	0.02	0.01	0.01
Bromine (mg/1)	0.06	0.04	0.049	0.053
Flouride (mg/1)	4.70	5.3	4.628	4.008
Silica (mg/1)	19.15	19.5	17.880	17.930
Boron (mg/1)	1.16	1.1	1.192	1.189
Strontium (mg/1)	44.3	44	40.550	32.430
Iodide (mg/1)	0.49	0.6	0.43	0.44
Copper (mg/1)	0.003	<0.005	< 0.001	< 0.001
Chromium (mg/1)	<0.001	<0.01	<0.001	< 0.001
Total Dissolved Solids (mg/1)	6175	5182	5253	3871
Ec. @ 25 deg C (micromhos/cm)	8820	7510	7390	5520
PH (units)	7.56	7.68		
Free CO2 (calculated) (mg/1)	20.4	19.6	18.1	23.8
Turbidity NT Units	3.60	5.03	12.16	4.04
Ion Balance (%)	1.9	2.17	0.25	1.42

Results

TDS, mg/L for Aruma Aquifer

100000

Results, water type

Qatar groundwater: Na and Cl

Results, water type

Ca (meq)

Qatar groundwater: Ca and Cl

MINISTRY OF Environment

Conclusions

- The characterization and feasibility of deep Aruma groundwater located southwest of Qatar was evaluated depending on data from (15) wells.
- The sustainable abstraction of Aruma groundwater is not significant and controlled by low transmissivity.
- Also, Aruma groundwater has high TDS and H₂S which make it not suitable for Drinking without treating and careful agriculture use
- H₂S values of Aruma groundwater indicate it is corrosive for abstraction equipments and materials.
- However, the lack of regional monitoring data prevents any firm conclusions regarding the full potential for sustainable development.
- Numerical modeling with more regional data of Aruma aquifer will be very helpful for firm development scenarios..

Thank you

Dr. Mohamed Shamrukh

"Water is life, sanitation is dignity."