

Exergy Analysis of Large ME-TVC Desalination System

Anwar O. Binamer

Water & Energy Program\Research Directorate Kuwait Foundation for the Advancement of Sciences (KFAS)

The 10th Gulf Water Conference, 22-24 April 2012, Doha- Qatar

Outlines

- ***** Introduction
- Process description
- Thermal analysis
- System performance and model validity
- Sensitivity analysis
- **Conclusions.**

Introduction

Several ME-TVC desalination units have been installed recently in * most of the GCC countries.

* The total installed capacity has increased up to 500 MIGD in the last decade.

Table1: Several projects of ME-TVC in GCC

Year	Location	Country	Total capacity, MIGD
1991	Jabal Dhana	UAE	4
2000	Umm Al-Nar	UAE	7
2001	Layyah	UAE	10
2002	Al-Taweelah A ₁	UAE	52
2005	Sharjah	UAE	16
2006	Al-Hidd	Bahrain	60
2007	Al-Jubail	Saudi Arabia	176
2008	Fujairah	UAE	100
2010	Ras Laffan	Qatar	63

Fig. 1 The unit size capacities of these units were increased exponentially from 1 to 8.5 MIGD in a very short period.

* The unit size capacity is available at 10 MIGD, and it is expected to increase up to 15 MIGD in the near future.

* The new trend of combining ME-TVC with conventional multieffect unit led to this increase in the unit size.

- * Limited studies were carried out ME-TVC from exergy point of view since the mid of nighties, but it has been published in several works recently.
 - * A mathematical model of ME-TVC is developed in this study, using EES Software.
 - * This model is used to evaluate the system performance of some new commercial units having capacities of 2.4, 3.5 and 6.5 MIGD.

Process Description

Fig. 2 Two identical ME-TVC units are combined with a single ME unit.

Thermal analysis

- * First and Second Laws analyses are used to develop a mathematical model of the system.
- * Mass, energy and exergy balance is applied to the thermocompressors, evaporators, feed heaters and end condenser.

* Assumptions:

- Steady state operation,
- Negligible heat losses to the surrounding,
- Equal temperature difference across effects & feed heaters,
- The variations of *Cp* & *BPE* with the *T* and salinity are negligible.

* Energy balance is applied to each evaporator in ME-TVC units, in order to find:

$$D_{1} = \frac{(D_{s} + D_{r}) \cdot (h_{d} - h_{fd})}{L_{1}} - F_{1} \cdot C \cdot \left(\frac{T_{1} - T_{f1}}{L_{1}}\right)$$

$$D_{2} = (D_{1} + D_{r} \cdot y - F_{1} \cdot y) \cdot \frac{L_{1}}{L_{2}} + B_{1} \cdot \frac{C \cdot \Delta T}{L_{2}} - F_{2} \cdot C \cdot \frac{(T_{2} - T_{f2})}{L_{2}}$$

$$D_{j} = [(D_{j-1} + \sum_{i=1}^{j-2} (D_{i} + D_{r}) \cdot y - (j-1) \cdot F_{j} \cdot y)] \cdot \frac{L_{j-1}}{L_{j}} + B_{j-1} \cdot \frac{C \cdot \Delta T}{L_{j}} - F_{j} \cdot C \cdot \frac{(T_{j} - T_{j})}{L_{j}}$$

* Energy balance is applied to each evaporator in MED unit, in order to find:

$$D_{j+1} = 2 \cdot D_{f} \cdot \frac{L_{j}}{L_{j+1}} + 2 \cdot B_{j} \cdot \frac{C \cdot \Delta T}{L_{j+1}} - F_{j+1} \cdot C \cdot \frac{\left(T_{j+1} - T_{fj+1}\right)}{L_{j+1}}$$

$$D_{j+2} = \left(D_{j+1} + \sum_{i=1}^{j} (D_i + D_r) \cdot y - (j+n) \cdot F_{j+2} \cdot y\right) \cdot \frac{L_{j+1}}{L_{j+2}} + 2 \cdot B_{j+1} \cdot \frac{C \cdot \Delta T}{L_{j+2}} - F_{j+2} \cdot C \cdot \frac{\left(T_{j+2} - T_{j+2}\right)}{L_{j+2}}$$

$$D_{n} = [(D_{n-1} + \sum_{i=1}^{n-2} (D_{i} + D_{r}) \cdot y - (j+n-1) \cdot F_{i} \cdot y)] \cdot \frac{L_{n-1}}{L_{n}} + 2 \cdot B_{n-1} \cdot \frac{C \cdot \Delta T}{L_{n}} - F_{i} \cdot C \cdot \frac{(T_{n} - T_{f})}{L_{n}} + C \cdot \frac{(T_{n} -$$

* The total distillate output from all effects is equal to

$$D = 2 \cdot \sum_{i=1}^{j} D_i + \sum_{j+1}^{n} D_{j+1}, \quad i = 1, 2, \dots 3$$

* Exergy balance is conducted to the thermo-compressors, evaporators, condenser and the leaving streams to find the exergy destruction (I):

$$I = T_o \cdot \Delta S = E_{in} - E_{out}$$

$$I_{ej} = D_{s} \cdot [(h_{s} - h_{d}) - T_{o} \cdot (S_{s} - S_{d})] - D_{r} \cdot [(h_{d} - h_{gj}) - T_{o} \cdot (S_{d} - S_{gj})]$$

Effects The exergy destruction in the first, second and last effect

$$I_{e1} = (D_s + D_r) \cdot \left[(h_d - h_{fd}) - T_o \cdot (S_d - S_{fd}) \right] - D_1 \cdot L_1 \cdot \left(1 - \frac{T_o}{T_{v1}} \right) - F_1 \cdot C \cdot \left[(T_1 - T_{f1}) - T_o \cdot In \left(\frac{T_1}{T_{f1}} \right) \right]$$
 10

$$I_{e2} = \left(D_1 + D_r y - F_2 y\right) \cdot L_1 \cdot \left(1 - \frac{T_o}{T_1}\right) + B_1 \cdot C \cdot \left[\Delta T - T_o \cdot In\left(\frac{T_1}{T_2}\right)\right] - D_2 \cdot L_2 \cdot \left(1 - \frac{T_o}{T_2}\right) - F_2 \cdot C \cdot \left[\left(T_2 - T_{f2}\right) - T_o \cdot In\left(\frac{T_2}{T_{f2}}\right)\right]$$

$$(1)$$

$$\begin{split} I_{en} = & \left[D_{n-1} + \sum_{i=1}^{n-2} \left(D_i + D_r \right) \cdot y - \left(j + n - 1 \right) F_i \cdot y \right] \cdot L_{n-1} \cdot \left(1 - \frac{T_o}{T_{n-1}} \right) + 2 \cdot B_{n-1} \cdot C \cdot \left[\Delta T - T_o \cdot In \left(\frac{T_{n-1}}{T_n} \right) \right] \\ & - D_n \cdot L_n \cdot \left(1 - \frac{T_o}{T_n} \right) - F_i \cdot C \cdot \left[\left(T_n - T_f \right) - T_o \cdot \ln \left(\frac{T_n}{T_f} \right) \right] \end{split}$$

۱۳

Condenser and Leaving Streams * The exergy destruction in the condenser,

$$I_{c} = D_{n} \cdot L_{n} \cdot \left(1 - \frac{T_{o}}{T_{n}}\right) - M_{c} \cdot C \cdot \left[\left(T_{f} - T_{c}\right) - T_{o} \cdot \ln\left(\frac{T_{f}}{T_{c}}\right)\right]$$

* The leaving streams, D_r , D_f and B_n can be expressed as:

$$\boldsymbol{I}_{Dr} = \boldsymbol{D}_r \cdot \boldsymbol{C} \cdot \left[\left(\boldsymbol{T}_{vj} - \boldsymbol{T}_c \right) - \boldsymbol{T}_o \cdot \ln \left(\frac{\boldsymbol{T}_{vj}}{\boldsymbol{T}_c} \right) \right]$$

$$I_{Df} = D_f \cdot C \cdot \left[\left(T_{vj} - T_c \right) - T_o \cdot \ln \left(\frac{T_{vj}}{T_c} \right) \right]$$

$$\boldsymbol{I}_{Bn} = \boldsymbol{D}_n \cdot \boldsymbol{C} \cdot \left[\left(\boldsymbol{T}_n - \boldsymbol{T}_c \right) - \boldsymbol{T}_o \cdot \ln \left(\frac{\boldsymbol{T}_n}{\boldsymbol{T}_c} \right) \right]$$

* The heat transfer area of each effect can be obtained from the latent heat of condensation (thermal load).

$$Q = U_e \cdot A_e \cdot \Delta T_e$$

* heat transfer area for the 1st, 2nd and last effect

$$A_{e1} = rac{\left(D_{s} + D_{r}\right) \cdot \left[h_{d} - h_{fd}\right]}{U_{e1} \cdot \left(T_{d} - T_{1}\right)}$$

$$A_{e2} = \frac{(D_1 + D_r \cdot y - F_1 \cdot y) \cdot L_1}{U_{e2} \cdot (T_{v1} - T_2)}$$

$$A_{n} = \frac{\left[(D_{n-1} + \sum_{i=1}^{n-2} (D_{i} + D_{r}) \cdot y - (j+n-1) \cdot F_{i} \cdot y] \cdot L_{n-1} \right]}{U_{en} \cdot (T_{vn-1} - T_{n})}$$

System performance

* The system performance of the ME-TVC model can be evaluated in terms of :

Gain output ratio

$$GOR = \frac{D}{D_s}$$

Specific heat consumption

Specific exergy destruction

21

22

23

Specific heat transfer area

$$\frac{At_d}{D} = 2 \cdot \sum_{i=1}^{j} \frac{A_{ei}}{D_i} + \sum_{j+1}^{n} \frac{A_{ei}}{D_i} + \sum_{i=1}^{n-2} \frac{A_{fi}}{D_i} + \frac{A_c}{D}$$

Specific exergy consumption

$$A_{d} = \frac{D_{s}}{D} \cdot \left[\left(h_{s} - h_{fd} \right) - T_{o} \cdot \left(S_{s} - S_{fd} \right) \right]$$
 25

Model Validity

* The validity of the model was tested against some available data of commercial units having different capacities:

ALBA in Bahrain
Umm Al-Nar in UAE
Al-Jubail in KSA
5 MIGD.

* The results showed good agreements

Table 2: Model results against the actual data.

Desalination Plant	Alba		Umm Al-Nar		Al-Jubail	
Number of effects	4		6		8	
Unit capacity, MIGD	2.4		3.5		6.5	
Oper. & Desi. Parameters	М	А	М	А	М	А
Motive pressure, bar	21	21	2.8	2.8	2.7	2.7
Top brine temperature, °C	63	63	63	62	63	NA
Minimum brine temperature, °C	48	48	44	43	42	NA
Motive steam flow rate, kg/s	17	16.8	22	21.3	31	NA
Temperature drop per effect, °C	5	5	3.8	3.8	3	NA
System Performance						
Gain output ratio	7.23	7.5	8.37	8.6	10.9	NA
Specific heat consumption, kJ/kg	348	NA	292	287	223	NA
Specific exergy consumption, kJ/kg	127	NA	74	NA	56	NA
Specific heat transfer area, m ² /kg/s	244	NA	335	310	452	NA
Specific exergy destruction, kJ/kg/s	94	NA	54	NA	41	NA

Sensitivity analysis

* A sensitivity analysis is carried out to investigate the system performance variations of Al-Jubail unit.

* This project belongs to Marafiq Company and it is currently considered as the largest ME-TVC plants in the world, (176 MIGD).

Fig. 3 Schematic Diagram of Al-Jubail ME-TVC unit

Fig. 4 The effect of motive steam on the distillate production from the effects.

Fig.5 The effect of T_1 on the distillate production and gain ratio.

Fig.6 The effect of T_1 on the specific heat and specific exergy consumption.

Fig.7 The effect of ΔT on the specific heat transfer area at different T_1

Fig.8 The effect of T_1 on the specific exergy destruction for different units

Fig.9 The main exergy destructions in Al-Jubail Unit.

Thermo-compressors and effects are the main sources of exergy destruction

Fig. 11 The increase of gain ratios in the new projects.

Table 3. Most ME-TVC units operated by CCPP in the new projects.

Plant	ALBA	Umm Al-NAR	Al-JUBAIL	Al-Fujairah	
Country	Bahrain	UAE	KSA	UAE	
Year of commission	1999	2000	2007	2008	
Source of steam	Boiler	CG-ST/HRSG	CG-ST/HRSG	CG-ST/HRSG	
Type of fuel	Diesel oil	Natural gas	Natural gas	Natural gas	
Power Capacity, MW	-	1700	2700	2000	
Desalination	ME-TVC	ME-TVC	ME-TVC	ME-TVC/RO	
Unit capacity, MIGD	2.4	3.5	6.5	8.5/RO	
Number of units	4	2	27	12/RO	
Total capacity, MIGD	9.6	7	176	100+30	
Number of effects	4	6	8	10	
Water cost, US \$/m ³	NA	NA	0.827	0.60	

Hybrid desalination system is introduced in Al-Fujairah project (large ME-TVC units of 8.5 MIGD with RO).

Fig. 12 The decrease in the water cost in the last decade (ME-TVC).

Conclusions

- * The new trend of combining ME-TVC unit with a conventional MED unit has been used lately in several large projects. This trend provides an approach to increase the unit capacity with a more compact design.
- * Exergy analysis shows that the specific exergy destruction in ALBA unit is almost twice that in Umm Al-Nar and Al-Jubail units because high motive pressure is used in ALBA compared to low motive pressure in other units.
- * The analysis indicates that thermo-compressors and the effects are the main sources of exergy destruction in these units.
- * The first effect of Al-Jubail was found to be responsible for about 31% of the total effects exergy destruction compared to 48% in ALBA and 36% in Umm Al-Nar.

- * The specific exergy destruction can be reduced by increasing the number of effects as well as working at lower top brine temperatures.
- * The manufacturer tried to increase the number of effects gradually (4, 6, 8, etc.) in order to increase the size of the units in a compact design
- * Most of the new ME-TVC units are commonly operated with large combined cycle power plants in order to reduce the power and water cost.

