Coupling of Water and Atmosphere Reactive Transport Simulations - the New 3D SMART Model Johannes Lawen¹², Tejas Bhatelia¹, Georg Fieg², Ahmed Abdel-Wahab¹ ¹ Texas A&M University at Qatar, Texas A&M Engineering Building, Education City, 23874 Doha, Qatar (johannes.lawen@qatar.tamu.edu, ahmed.abdel-wahab@qatar.tamu.edu) ² Hamburg University of Technology, Schwarzenbergstrasse 95, 21073

Hamburg, Germany (<u>g.fieg@tuhh.de</u>)

Table of Content

- •Concept of Coupled Sea-Atmosphere Simulations
- Boundary Conditions
- •Meshing
- •FLUENT Simulation for the Atmosphere
- Demonstrator for Coupled Sea-
- **Atmosphere Simulation**
- Conclusions & Prerequisites

Coupling of Water and Atmosphere Reactive Transport Simulations - the New 3D SMART Model

Boundary Conditions

Boundary Condition with $\boldsymbol{n} \perp \partial \Omega$		FVE-approximation \forall <i>ihk</i> corresponding to the BC
Horizontal Open	$0 = \frac{\partial c}{\partial n}\Big _{n=0}$	$\pi_{ihs} = 0 \wedge g_{ihs}^t = 0$
No-flux	$0 = \boldsymbol{u}\boldsymbol{c} - D \left. \frac{\partial \boldsymbol{c}}{\partial n} \right _{n=0}$	$\dot{v}_{ihs}^t = 0 \wedge g_{ihs}^t = 0$
Sea Boundary Layer	$c_{w} = \frac{c_{at}}{k_{eq}} \wedge \left. \frac{\partial c}{\partial z} \right _{\substack{at \\ intf}} = 0$	$\boldsymbol{c}_{h_{sea}}^{t+\Delta} = \frac{\boldsymbol{c}_{h_{air}}^{t+\Delta} \boldsymbol{v}_{h_{air}}^t + \boldsymbol{c}_{h_{sea}}^{t+\Delta} \boldsymbol{v}_{h_{sea}}^t}{k_{eq} \boldsymbol{v}_{h_{air}}^t + \boldsymbol{v}_{h_{sea}}^t} \wedge \boldsymbol{g}_{h_{sea}s}^t = 0$
Air Boundary Layer	$c_w = \frac{c_{at}}{k_{eq}} \wedge \left. \frac{\partial c}{\partial z} \right _{\substack{at\\intf}} = 0$	$\boldsymbol{c}_{h_{air}}^{t+\Delta} = \frac{\boldsymbol{c}_{h_{air}}^{t+\Delta} \boldsymbol{v}_{h_{air}}^{t} + \boldsymbol{c}_{h_{sea}}^{t+\Delta} \boldsymbol{v}_{h_{sea}}^{t}}{\boldsymbol{v}_{h_{air}}^{t} + \frac{\boldsymbol{v}_{h_{sea}}^{t}}{k_{eq}}} \wedge \boldsymbol{g}_{h_{airs}}^{t} = 0$
Sea Boundary Layer with constituent in atmosphere	$c_w = \frac{c_{at}}{k_{eq}} \wedge \left. \frac{\partial c}{\partial z} \right _{\substack{at \\ intf}} = 0$	$\boldsymbol{c}_{h_{sea}}^{t+\Delta} = \frac{c_{at}}{k_{eq}} \wedge \boldsymbol{g}_{h_{sea}s}^{t} = \boldsymbol{0}$
Vertical air BC at atmospheric top-layer	$D \left. \frac{\partial c}{\partial z} \right _{z=0^{-}} = D \left. \frac{\partial c}{\partial z} \right _{z=0}$	$\boldsymbol{c}_{q+1}^t = \boldsymbol{g}_{qs}^t (\boldsymbol{c}_q^t - \boldsymbol{c}_{q-1}^t) + \boldsymbol{c}_q^t$

Page 4

Coupling of Water and Atmosphere Reactive Transport Simulations - the New 3D SMART Model

Page 6

Coupling of Water and Atmosphere Reactive Transport Simulations - the New 3D SMART Model

A: Average of upper atmosphere layer.

B: Lower two atmosphere layer.

C: Top-layer sea.

D: Average sea except top layer.

Precursor Simulations

Joint sea and atmosphere species transport precursor simulations are carried out as byproduct of existing projects:

Arabian Gulf model

Conclusion

The 3D SMART is capable to simulate coupled sea-atmosphere natural gas plumes.

Identified Prerequisites

- Calibrated Arabian Gulf model including all data (bathymetry, salinity fields, tidal data etc.)
- 3 models coupled and ran on the same super computer

This publication was made possible by NPRP grant # 29-6-7-39 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

