

District Cooling Water Resource Management

Issa Qandeel, P.E., LEED® AP, MBA

OUTLINE

- GCC Construction Projections
- District Cooling Overview
- Benefits of District Cooling
- GCC District Cooling Facts & Figures
- Water Resource Management
- Moving Forward

GCC Region Construction Figures

- Increase demand due to rise in population & other milestone events.
- In 2010 over \$200 billion construction contracts awarded (40% buildings, 40% energy, 20 infrastructure).
- > \$900 billion real estate projects are estimated to be underway.
- In the coming few years, > 65% of GCC projects fall under "Buildings"

How does it work

Customer Connection

District Cooling System consists of:

1. Central chilled water plant

The plant has reliable and efficient industrial chillers. It is monitored 24 hours a day by qualified operation teams.

2. Pipe distribution network

Chilled water moves to the buildings through insulated steel pipes.

3. Customer connection

The chilled water reaches the customer at 5.5 °c, where it is cooled by transferring the heat through the energy transfer station.

District Cooling in Qatar

The Pearl-Qatar

West Bay-Doha Lusail

Katara

Mushaireb Barwa City

Qatar Foundation

Qatar University Al Waab City

New Doha International Airport

Benefits of District Cooling

- Energy Efficient: DC offers energy saving of more then 40-60% compared with conventional air-conditioning systems).
- Environmental Advantage: Energy Savings Translate to Lower Power Generation Requirements, Hence; less CO2 & other greenhouse gases and contaminants to the environment.

Benefits of District Cooling

- Architectural Benefits: reduces customer plant space by 70%, clean roof (sky gardens, PV systems, etc).
- Less Noise & Vibration.
- Decentralized Plume.

GCC District Cooling Facts & Figures

- DC has proven to be the solution to the challenge of 'environment, energy and economy'.
- It has been implemented world-wide since the turn of the 20th century & in the GCC region as early as the 1960's.
- DC has vastly grown throughout the GCC region in the last few years.
- Current DC capacity is approximately 3-million TR & expected to reach over 7-million in the coming 3-4 years.

Water Resource Management

DC relies on water for its operations to make-up for:

- Cooling Tower Evaporation and Drift Losses.
- Blow Down due to Increased Solids Concentration.

DC discharges a portion of the required water out of the plants: to get rid of the concentrated minerals and solids due to evaporation.

Water-Cooled Chillers w/Cooling Towers

Water Type & Source Options

- Potable, RO, & Light-Grey Water:
 - ➤ No Special Equipment Design
 - ➤ Minimal Chemical Treatment
 - ➤ Most Advantageous To Use
- TSE Water:
 - > Special Equipment Design (Filtration, Polishing)
 - ➤ Additional Chemical Treatment

Water Type & Source Options

- Sea Water Make-Up:
 - > Special Condenser & Cooling Tower Design
 - > Additional Filtration and Chemical Treatment
 - ➤ Different piping material & arrangement
- Direct Sea Water Make-Up:
 - ➤ No Cooling Tower Required
 - ➤ Length of the Pipeline to be Laid Depends Upon Temperature Of Sea Water
 - ➤ Higher Pumping Flow Rates and Pressures
 - Special Condenser Design
 - > Special Chemical Treatment
 - ➤ Different piping material & arrangement

Flexibility in Make Up source/Discharge

Flexibility in Make Up source/Discharge

Flexibility in Make Up source/Discharge

Anticipated Cooling Water Requirements-GCC

Million m³/yr

System Configuration	Current (3-M TR)	~ 2015 (7-M TR)
Decentralized	45.9	107.2
District Cooling	36.7	85.8
Estimated Saving	9.2	21.4

Basis of Calculations & Assumptions:

- GCC DC Companies' utilize Efficient Water Management Processes.
- 50% Utilization of total DC Capacity.
- Study/Survey of Decentralized Systems Water Performance is underway. Expected to consume 25% over DC.

Water Resource Management Continuous Improvement

- Steps Taken to Reduce Water Consumption
 - Proper Chiller & Cooling Tower Maintenance
 - Advanced Automation & Monitoring
 - Water Quality Enhancement Through Mechanical and Chemical Systems
 - Blow Down Recycling
 - Collaboration with Water Treatment Experts

Qatar Cool Plant Performance

Danforman an Danamatans	Year		
Performance Parameters	2007	2010	2011
Electrical Power Consumption (kW/TR-Hr) (Industry Standard=1-1.1)	1.23	0.93	0.94
Water Consumption (US Gal/TR-Hr) (Industry Standard=2.0-2.1)	2.06	1.88	1.84

QC Water Saving @ West Bay ONLY (2009-2012) = 236,765 m³ (around 15% from Industry Standard)

Makeup Water & Discharge Quantities @ Different Water Sources

Million m³/yr

DC	Current (3M TR)		~ 2015 (7M TR)	
Water Source	Makeup	Blow down	Makeup	Blow down
Potable	36.7	7.3	85.8	17.2
TSE-Polished	40.4	8.3	94.4	19.4
Direct TSE	49.5	18.6	115.8	43.9
Sea	88.1	56.6	205.9	133.3

MAIN MAIN **OVERVIEW** PAGE

CHILLER

COOLING TOWER

CHILLER CONTROLS COOLING TOWER CONTROLS

VFD

User: sssssssss

Moving Forward

- This paper presented the flexibility of district cooling systems in relation to the make-up and discharge water, making it capable of providing an optimized solution when combined with other applications.
- Combining DC with other applications requires collaborative efforts among DC Providers, Utility Agencies, Regulatory Agencies, & Law Makers.