

Hybrid desalination technologies for sustainable water-energy nexus: Innovation in integrated membrane module development

Hyuk Soo Son

Assistant Professor, Prince Sultan University, KSA

hson@psu.edu.sa

Overview

- Introduction
- Hybrid Desalination
- Case study: FO-MD Hybrid system
 - Methodology & Results
- Conclusion and Recommendations
- Credits and Acknowledgements

Global water scarcity

- ✓ Climate change
- ✓ Environmental pollution
- ✓ Population growth

Higher demand on sustainable water resource management

Desalination

(Ihsanullah et al. 2021)

Desalination

	Number of desalination plants	Desalination s capacity		
	(-)	(million m ³ /day)	(%)	
Global Total	15,906	95.37	100	
Middle East and North Africa	4,826	45.32	47.5	
East Asia and Pacific	3,505	17.52	18.4	
North America	2,341	11.34	11.9 9.2 5.7	
Western Europe	2,337	8.75		
Latin America and Caribbean	1,373	5.46		
Southern Asia	655	2.94	3.1	
Eastern Europe and Central Asia	566	2.26	2.4	
Sub-Saharan Africa	303	1.78	1.9	

Global distribution of operational desalination facilities and capacities (>1000 m3/day) by sector user of produced water

Sustainability of desalination: water-energy nexus

✓ Environmental sustainability

✓ Economic sustainability

Hybrid Desalination

✓ Maximizing advantages ✓ Minimizing drawbacks & footprint

(Lienhard et al. 2016)

Hybrid Desalination

✓ Research

Number of publications on hybrid desalination

✓ Implementation

MSF-RO

Capacity : 1,036,000 m³/day

(MSF) 727,000 m³/day (RO) 309,000 m³/day

FO-RO * pilot plant

Capacity: 21.8 m³/day

(FO) 1.21 m³/day

(Lienhard et al. 2016, Al-Zuhairi et al. 2015)

Collaboration project – Saudi Aramco & KAUST

To investigate the feasibility and performance of a novel integrated membrane system

رامكو السعودية

saudi aramco

for the **simultaneous treatment of produced water** in different impaired water quality

Produced water

Objectives

- ✓ Formation and injected water containing production chemicals
- ✓ **Largest volume waste stream** in oil and gas production
- Complex mixture of dissolved and particulate organic and inorganic chemicals in water
- Wide ranges from essentially freshwater to concentrated saline brine

	Range of			
	Conc. (mg/L)			
Total Dissolved solids	100 - 400,000			
Total Suspended Solids	1.2 - 1,000			
Total Organic carbon	0.1 - 11,000			
Total Oil and Grease	2 - 560			

Produced water

	Range of			
	Conc. (mg/L)			
Total Dissolved solids	100 - 400,000			
Total Suspended Solids	1.2 - 1,000			
Total Organic carbon	0.1 - 11,000			
Total Oil and Grease	2 - 560			

Sustainable water cycle in Oil Processing facility

- ✓ Minimizing water loss
- ✓ Maximizing water quality

(Ahmed et al. 2020, Lee & Neff 2011, Al-Ghouti et al. 2019)

Membrane processes

Process	Driving force		
Dialycia	Concentration (ΔC)		
Dialysis	Activity (⊿a)		
Electrodialysis	Electrical potential ($\Delta \varphi$)		
Forward osmosis	Osmotic Pressure ($\Delta \pi$)		
Cas concretion	Hydrostatic pressure (Δp)		
Gas separation	Fugacity (<i>∆fi</i>)		
Membrane distillation	Vapor pressure (⊿p)		
Microfiltration	Hydrostatic pressure (Δp)		
Microfiltration	Hydrostatic pressure (Δp)Partial pressure (Δp_i)		
Microfiltration Pervaporation	Hydrostatic pressure (Δp)Partial pressure (Δp_i)Fugacity (Δf_i)		
Microfiltration Pervaporation	Hydrostatic pressure (Δp)Partial pressure (Δp_i)Fugacity (Δf_i)Hydrostatic pressure (Δp)		
Microfiltration Pervaporation Reverse osmosis	Hydrostatic pressure $(\varDelta p)$ Partial pressure $(\varDelta p_i)$ Fugacity $(\varDelta f_i)$ Hydrostatic pressure $(\varDelta p)$ Chemical potential $(\varDelta \mu i)$		

Forward osmosis & membrane distillation

Maximizing energy potential

Forward osmosis & membrane distillation

(*Xie et al. 2013*)

Forward osmosis & membrane distillation

Importance of module design in hybrid system

(Xie et al. 2013, Husnain et al. 2015, Ricci et al. 2019)

Osmotically and thermally isolated FO–MD integrated module

Conventional FO-MD module design

Novel design with isolation barrier

(a) internal and (b) external using a water-box

- Innovation in hybrid membrane module design
 - a) maximizing energy potential b) improving system sustainability

(Kim et al. 2019)

Collaboration project – Saudi Aramco & KAUST

أرامكو السعودية soudi oromco

Objectives

To investigate the feasibility and performance of a **novel integrated membrane system** for the **simultaneous treatment of produced water** in different impaired water quality

Project phases

- Feed water selection
- Characterization and lab-scale experiments using Synthetic feeds
- Feasibility and performance evaluation of a large-scale, hybrid FO-MD Module.

- Pretreatment requirement
- Estimation of energy consumption analysis

Fo-MD Hybrid Desalination Feed water selection Characterization and lab-scale experiments using synthetic feeds Range of

	Conc. (mg/L)			
Total Dissolved solids	100 - 400,000			
Total Suspended Solids	1.2 - 1,000			
Total Organic carbon	0.1 - 11,000			
Total Oil and Grease	2 - 560			

(Nawaz et al. 2021)

- Feed water selection
- Characterization and lab-scale experiments using synthetic feeds

traces

traces

FO membrane fouling characterization

Selection of feed / draw water sources and operating conditions

Lab-scale experiments using synthetic/real feeds

> Innovation in hybrid membrane module design

(Son et al. 2021)

Lab-scale experiments using synthetic/real feeds

(Son et al. 2021)

Lab-scale experiments using synthetic/real feeds

Comparative analysis between conventional and novel design in

1) different hydrodynamic conditions

- in the same module thickness (Set #1)
- In the same flow-channel thickness (Set #2)
- 2) different feed solution concentrations (Set #3)
- 3) different draw solution temperatures (Set #4)
- 4) different draw solution concentrations (Set #5)

Lab-scale experiments using synthetic/real feeds

Concentration and temperature polarization of FO-MD hybrid system

	Polarization Coefficient WITH Barrier				Polarization Coefficient WITHOUT Barrier			% Increase of Polarization Coefficients with Barrier		
	CPC _{FO}	TPC _{MD}	CPC _{MD}		CPC _{FO}	TPC _{MD}	CPC _{MD}	CPC _{FO}	TPC _{MD}	CPC _{MD}
Avg.	0.215 ± 0.03	0.657 ± 0.02	1.146 ± 0.00	Avg.	0.209 ± 0.02	0.567 ± 0.01	1.117 ± 0.00	1.9%	17.4%	2.6%

Lab-scale experiments using synthetic/real feeds

Conventional FO-MD integrated module

Lower FO/MD energy ratio indicates targeted energy usages in MD >> Thermal isolation

✓ Enhanced GOR considering total energy used

>> In average, from 0.475 to 0.405 & maximum, from 0.497 to 0.412

• Feasibility and performance evaluation of a large-scale, hybrid FO-MD Module

Collaboration project – Saudi Aramco & KAUST

أرامكو السعودية soudi oromco

Objectives

To investigate the feasibility and performance of a **novel integrated membrane system** for the **simultaneous treatment of produced water** in different impaired water quality

Project phases

- Feed water selection
- Characterization and lab-scale experiments using Synthetic feeds
- Feasibility and performance evaluation of a large-scale, hybrid FO-MD Module.

- Pretreatment requirement
- Estimation of energy consumption analysis

Osmotically and thermally isolated FO–MD integrated module

Conventional FO-MD module design

Novel design with isolation barrier

(a) internal and (b) external using a water-box

- Innovation in hybrid membrane module design
 - a) maximizing energy potential b) improving system sustainability

(Kim et al. 2019)

Conclusion and Recommendations

- Hybrid desalination is one of the most practical and efficient technologies that can afford environmental and economic sustainability
- Membrane hybrid desalination system requires a niche membrane module design depending on its technology and target water resources
- The innovation of FO-MD integrated membrane module improves thermal and osmotic energy efficiency of the hybrid system by an isolation barrier design

Conclusion and Recommendations

Hybrid desalination technology with renewable energy

(Akinosho et al. 2020, He et al. 2022)

Credits and Acknowledgements

King Abdullah University of Science and Technology (KAUST)

- Prof. NorEddine Ghaffour
- Dr. Muhammad Saqib Nawaz
- Dr. Sofiane Soukane
- Water Desalination & Reuse Center (WDRC)

Saudi Aramco

Process & Control Systems Department (P&CSD)

Prince Sultan University

Department of Engineering Management

Thank you for your kind attention.

Hyuk Soo SON / hson@psu.edu.sa , hyuksoo.son@kaust.edu.sa