

Developing a sensor-based agricultural water management system for irrigation scheduling, automation, and optimization

Farhat Abbas

Professor / Senior Researcher

farhat.abbas@udst.edu.qa

Overview

- Introduction
- Objectives
- Methodology
- Results
- Next steps
- Conclusion
- Credits and Acknowledgements
- Questions, Feedback, and Discussion

Introduction

The world population will cross 8 billion people by 2025 posing challenges to the world's:

- Global Poverty
- Environment
- Sustainable Development
- World's Food Security
- Water Availability

Qatar is investing in and encouraging research and development initiatives related to food security and sustainability.

Ben Hassen et al., 2020; Ungureanu et al., 2020; Guo et al., 2021

Global, GCC Gulf Cooperation Council)

Food Insecurity

GCC members import about 85% of their food.

4

Cont., Introduction

Cont., Introduction

Water is used to irrigate food plants, trees, landscape

Solenoid irrigation valves are installed but turned ON and OFF manually every day on a fixed interval basis.

To address the challenges of food security, researchers at UDST are working on water availability/management issues

Current Practice:

Interval-based irrigation

Demerits

- Ignores actual crop water needs > over irrigation > nutrient loss > poor yield
- Inefficient resource management > non-profitable farming

Proposed Method:

Sensor-based irrigation

Merits

- Considers actual crop water needs > smart irrigation > optimum yield
- Water conservation > water use efficiency > nutrient use efficiency > farm profit

Objectives

- i) Investigate smart and sustainable irrigation systems for Qatar,
- ii) Develop weather-based models to predict crop water requirements,
- iii) Capture the real-time water content in the root zone,
- iv) Conduct site-specific irrigation strategies based on crop needs, and
- v) Evaluate water use efficiency.

Methodology Sensor-based irrigation

Irrigation scheduling > System Automation

- 1. Soil Moisture Sensor: ϑ
- 2. Microprocessor
- 3. Solenoid irrigation valve

Threshold setup at $\vartheta_{\sf FC}$ and $\vartheta_{\sf WP}$

Methodology

A) a wireless soil moisture sensor, (B) an irrigation solenoid valve controller, (C) a single channel relay, (D) a solenoid valve, (E) a step-down transformer 240/24VAC, and (F) soil state representations

Next steps

Sensor will tell us plant available water (ϑ_{AW}) in soil.

 $artheta_{\mathsf{AW}}$ is water available between field capacity ($artheta_{\mathsf{FC}}$) and wilting

point $(\vartheta_{\mathsf{WP}})$.

$$\triangleright \ \vartheta_{AW} = \vartheta_{FC} - \vartheta_{WP}$$

- WP = Plants cannot uptake water after WP
- Start of irrigation before WP
- > Stop of irrigation at FC
- \succ Find a relationship between ϑ_{FC} and ϑ_{WP} for different soils

Next steps

Soil Sampling - Sensor Calibration

Sample 1 **UDST** soil **Imported**

Sample 2 Farm soil Local

Next steps

Planned on-site implementation

Conclusion

- A Qatar-specific sensor-based automated irrigation system will provide precision irrigation to greenhouse crops and date palm trees.
- Designing, developing, and lab testing tasks of the system have been achieved.
- Calibration of the irrigation sensors is underway for their installation in the real soils or soil substrates for $\vartheta_{FC} \vartheta_{WP}$.
- Irrigation system will turn on ON before ϑ_{WP} and trun OFF at ϑ_{FC} .
- The provision of a Wi-Fi connection is essential to this prototype.

Harsh climate and poor soils will force GCC farmers to adopt greenhouse cultivation – Saudi Arabia Line City will use CEA to grow fruits and vegetables in greenhouses. Sensor-based irrigation system has a great potential to solve water scarcity and management issues.

Credits and Acknowledgements

Farhat Abbas ^{1,*}, Salem Al-Naemi ¹, Aitazaz Farooque ^{2,3}, Rachid Benlamri ¹, Hassan Ali ¹, Jose Emmanuel L. Ventura ¹

Projects: MME03-1121-210025
funded by
Qatar National Research Fund
Qatar Research, Development and
Innovation (QRDI) Council — Qatar

¹Centre of Excellence in Food Security and Sustainability, University of Doha for Science & Technology, P.O. Box 24449, Doha, Qatar

² Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, C1A 4P3, PE, Canada

³ Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, C1A 4P3, PE, Canada

^{*} Corresponding author: Email: farhat.abbas@udst.edu.qa; Tel.: +974 44952263

Questions, Feedback, and Discussion