

Electricity Generation and Industrial Wastewater Treatment Using Microbial Fuel Cell

Dr. Abdullah Al-Matouq

Associate Research Scientist-Water Research Center

amatouq@kisr.edu.kw

Overview

- Introduction
- Aims and Objectives
- Materials and Methodology
- Results
- Conclusion & Recommendation

Introduction

- Humanity creates about 380 billion liters of wastewater annually, and the volume is expected to increase 24% by 2030 and 51% by 2050.
- Treating municipal wastewater represents 3-5% of the global electricity consumption.
- Wastewater treatment plants consume approximately 0.5–2.0 kWh per cubic meter of treated water (Hamawand, 2023).

- Energy in wastewater: Chemical energy, Thermal Energy, and Kinetic Energy.
- The organic energy in wastewater is approximately **5-10 times greater** than the electric energy required to treat it (Horne et al. 2013; Moss et al. 2013).
- 16.1-kilo Joules of Energy for each gram of COD (2.8–4.2 kWh/kg COD)

Cont., Introduction

- **Microbial Fuel Cells (MFCs)** can convert chemical energy into electrical energy through the use of microbes.
- These microorganisms act as biocatalysts to oxidize the chemical components of the biodegradable substrates using the electrodes in the MFC.
- The chemical energy of wastewater accumulates in chemical compounds and may be extracted through the oxidation-reduction reactions of these substances.

Aims & Objectives

- The main aim of this paper is to investigate treatment efficiency and energy generation from various industrial wastewater streams using tubular pilot scale MFCs.
- The study's specific objectives were:
 - 1. To design pilot scale tubular MFCs.
 - 2. To assess the efficiency of MFC in treating industrial wastewater.
 - 3. To evaluate energy generation from different industrial wastewater using MFCs.

Materials and Methodology

- 1. Selection of industrial wastewater streams.
 - These are the most common industries in Kuwait: refineries, dairy factories, detergents factories, and soft drinks factories.
- 2. Nine tubular MFCs were designed, fabricated and installed at the Kuwait Institute for Scientific Research (KISR) workshop.

Results

- All the MFCs were continuously operated for >120 days, and the generated electricity varied depending on the industry.
- All MFCs generated electricity with **maximum open voltage** of:
 - 1. Dairy wastewater: **0.62 V.**
 - 2. Domestic wastewater: 0.5 V.
 - 3. Detergent wastewater: **0.49 V.**
 - 4. Soft drinks wastewater: 0.46 V.
 - 5. Petrochemical wastewater: 0.16 V.

Results

• In term of Coulombic efficiency (CE), all MFCs had low CE between 0 to 2.9 %.

Reference	Average CE %	Volume	Substrate
This Study	0.61 ± 0.24	6.5 L	Real WW
This Study	0.44 ± 0.18	6.5 L	Detergents
This Study	0.30 ± 0.10	6.5 L	Dairy
This Study	0.02 ± 0.00	6.5 L	Petrochemical
This Study	0.75 ± 0.19	6.5 L	Soft Drinks
Ghadge et al. [31]	0.23	45 L	Synthetic WW
Wu et al. [32]	1.00-3.00	12 L	Synthetic WW
Mohamed et al. [33]	0.60	0.1 L	Dairy
Antonopoulou et al. [34]	1.90	0.3 L	Synthetic

Table 1. Summary of Average CE from Previous Studies.

Results

- The MFCs generated the **highest power density** of:
 - 1. Dairy MFC 86 mW/m³.
 - 2. Control MFC 74 mW/m³.
 - 3. Detergent MFCs 41 mW/m^3 .
 - 4. Soft drink MFCs 20 mW/m³.
 - 5. Petrochemical MFCs 1 mW/m³.

Results (Wastewater Treatment)

• The MFCs achieved high COD removal, except for the petrochemical MFCs.

Petrochemical WW

Results (Wastewater Treatment)

Soft Drinks WW

Domestic WW

Results (Wastewater Treatment)

 The concentration of N increased in most of the MFCs, except for the domestic and petrochemical MFCs.

NH₃

TN

Results (Internal Resistances)

- The internal resistances in the fabricated MFCs were high, and there is no correlation between wastewater type and internal resistance.
- Pearson coefficient analysis shows a negative correlation between the generated electricity and the internal resistance.

	Internal resistance (Ω)
Voltage (Control)	-0.563
Voltage (Detergents MFCs)	-0.976*
Voltage (Dairy MFCs)	-0.657
Voltage (Soft Drinks MFCs)	-0.737*

Table 2. Correlations between Voltage and Internal Resistance (Ω) in the MFC

* Correlation is significant at the 0.05 level (2-tailed)

Conclusion and Recommendations

- The characteristics of different industrial wastewaters have great influence the applicability of MFC technology.
- The dairy industry achieved the highest potential in terms of electrical energy generation and organics removal. Thus, MFCs have the potential for full-scale application.
- In petrochemical MFC, the inhibitive chemicals, hydrophobicity of chemicals leading to catalyst deactivation, and generally un-favourable microbial growth conditions.

Recommendations

- Improve the performance of MFC by using a more efficient and self-generating catalyst in the cathode electrode instead of carbon.
- Enhance the design of the used MFC by connecting more than one MFC in series and storing the generated electricity in storage battery.
- Integrate MFCs with other technologies to provide an efficient system for concurrent electricity generation and wastewater treatment.

Credits and Acknowledgements (if any)

- The authors would like to thank the Kuwait Institute for Scientific Research (KISR) and the Kuwait Foundation for the Advancement of Sciences (KFAS) for their financial support.
- Gratitude is also extended to the Water Sciences and Technology Association (WSTA).