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Introduction

More than two Billion people depend on groundwater as their Primary water
source.

More than half of the water used for irrigating the world’s food supply comes
from groundwater as well.

Managing groundwater resources involves many aspects, including observing its
usage and predicting its future utilization, In addition to aquifer delineation,
pollution indicators, and any kind of relation the aquifers may maintain with
each other.

One of the key aspects of groundwater management is aquifer delineation.
Accurately delineating aquifer boundaries provides numerous critical benefits
that support sustainable groundwater management and utilization.
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Feature Importance [
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Cl/ustering Map and Conclusions

First, the samples collected in the Fujairah region were
always classified as one cluster, never subdivided into
smaller clusters even when the number of clusters was
raised into five.

Five wells in Ras Al Khaimah were classified into the
same cluster as the Fujairah wells, which indicate their
abnormality compared to the region and their close
resemblance to the Fujairah region wells

The model classified two samples as a different group
compared to the rest of the samples collected in the
Hafeet region. Both samples were collected from surface
water (Green Mubazzarah Lake) as opposed to the other
samples being from groundwater sources
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Methodology

1. Framework
* Preprocessing
* Clustering Model
a) Custom Distance Function
b) Prediction
* Framework Parameter

2. Optimization Via Simulation (OVS)

3. Visualization
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Clustered wells
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Results - Spatial
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Conclusion and Recommendations

Artificial Intelligence (Al) utilization in hydrology is expanding exponentially. Yet
awareness of its benefits and advantages are quite lacking.

Data is the backbone of Al, yet protocols and policies that encourage sharing is
almost none existent in the GCC.

Collaboration and knowledge sharing has always been of incredible importance to
Science in general, and to Al research in particular.

Platforms and standardization of hydrology data would allow scientists to benefit
immensely from the Al revolution and would allow the GCC countries to reap the
benefits of advanced modeling and prediction techniques.

We believe its imperative to have an initiative on the GCC level similar to the G20
Data Gaps Initiative (DGI) to organize, follow, and implement policies and solutions
for Data sharing, utilization, and dissemination to prepare for the advent of Al.
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