

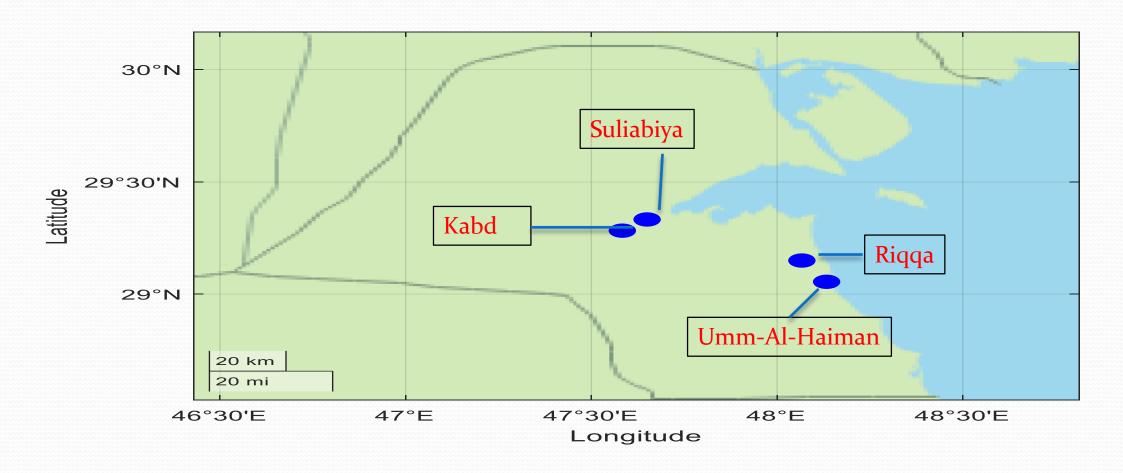
Fate of Estrogens in Kuwaiti Municipal Wastewater Treatment Plants

Abdallah Abusam Research Scientist aabusam@kisr.edu.kw

Overview

- Introduction
- Material and Methods
- Results
- Conclusions
- Acknowledgement

Introduction


- □ Estrogens are hormones that produced naturally or synthetically (man-made).
 - ➤ Common natural estrogenic are Estrone (E1), estradiol (E2) and estriol (E3).
 - Examples of the synthetic steroid are ethynyl estradiol (EE2) and Diethylstilbetrol (DES). They are commonly used in manufacturing birth control pills.
- Both natural and synthetic estrogens can adversely affect humans, animals or fish. They can disrupt the reproductive and sexual systems of fish, wildlife and humans.
- □ According to WHO, the adverse impact of estrogens can appear at low concentrations as 1 ng/l.

Introduction Cont.

- Estrogens are often excreted as urine, and thus, they end ultimately in wastewater treatment plants (WWTPs).
- □ WWTPs are considered to be the major point sources of pollution with estrogens.
 - ➤ Efficient removal at WWTPs is the best control strategy.
- ☐ The main objectives of this study were to determine the fate of estrogenic compounds in Kuwaiti municipal WWTPs.

Materials & Methods

☐ Kuwait has four main activated sludge WWTPs

Materials and Methods Cont.

Design of Kuwait's Municipal WWTPs

Plant	Treatment Level	Design Capacity (m3/d)	Current Load (m3/d)
Kabd	Tertiary (CI+UV)	250,000	160,000
Riqqa	Tertiary (CI)	180,000	260,000
Sulaibiya	Advanced (UF+RO)	600,000	625,000
Um-Al-Haiman	Tertiary (CI+UV)	27,000	23,000

Materials and Methods Cont.

- □ Estrogens concentrations of the influents and effluents streams of three WWTPs (Kabd, Sulaibiya and Umm-AlHaiman) were monitored for ten months.
- □ Concentrations of five estrogens (E1, E2, EE2, E3, DES) were determined by Solid-Phase Extraction (SPE) Gas Chromatography-Mass Spectrometry (GC-MS) method.

Results

Influent Concentrations of Estrogens (ng/l)

Estrogens	WWTP	Minimum	Mean	Maximum	Std.	C.V. (%)
Type						
E1	Kabd	О	4	14	5	147
	Sulibiya	О	72	372	148	205
	Haiman	6	11	14	3	29
E2	Kabd	О	3	9	4	128
	Sulibiya	О	32	160	63	195
	Haiman	О	5	10	4	83
EE2	Kabd	О	19	50	15	80
	Sulibiya	О	194	474	199	102
	Haiman	О	36	90	42	116
E3	Kabd	О	3	20	8	265
	Sulibiya	О	65	360	145	225
	Haiman	О	25	88	32	127

Influent Concentrations Cont.

- □ Kabd, Sulaibiya and Um-Al-Haiman plants are located at 6 km, 25 km and 10 km, respectively, from the catchment areas.
- □ Higher E1 at Sulaibiya can be attributed to biodegradation and transformation of E2 and EE2 into E1 conjugates during transportation in the relatively long sewerage system.
- □ Concentrations of the synthetic estrogens, EE2, were highest at Sulaibiya plant because it treats most of the urban wastewater of Kuwait.

Effluent Concentrations of estrogens (ng/l)

Estrogens	WWTP	Minimum	Mean	Maximum	Std.	C.V. (%)
Type						
E1	Kabd	0	12	54	19	155
	Sulibiya	О	45	233	92	205
	Haiman	О	1	4	2	243
E2	Kabd	0	1	8	3	265
	Sulibiya	О	4	7	3	78
	Haiman	0	2	8	4	155
EE2	Kabd	О	10	28	12	124
	Sulibiya	О	14	70	28	200
	Haiman	О	16	40	15	96
EE3	Kabd	О	7	18	8	122
	Sulibiya	0	12	22	10	83
	Haiman	О	7	19	10	144

Effluent Concentrations Cont.

- □ As expected, the highest concentrations of both natural (E1, E2 and E3) and synthetic (EE2) estrogens found for the Sulaibiya plant, which experienced the highest estrogens loading.
- □ Umm-Al-Haiman achieved much lower concentration of E1 (1 ng/l) compared to Kabd plant (12 ng/l).
- □ Except for E1 concentrations, there were no significant difference between the average concentrations of estrogens in the effluents of Umm-Al-Haiman and of Kabd plants.
- □ The very high variation (STD > mean) of effluent concentration indicates that the operation of the Kuwaiti WWTPs need to optimized/upgraded for the removal of estrogens.

Removal Efficiency of Estrogens (%)

WWTP	E1	E2	EE2
Kabd	-234	66	49
Suliybiya	37	87	93
Um-Al-Haiman	94	52	56

- ☐ Highest removal of estrogens at the Suliabiya plant can be attributed to the advanced membrane treatment.
- □ However, the study did not investigate the contribution of the different stages of wastewater treatment (preliminary, secondary, tertiary or advanced) nor the effects of operational variables.

Potential Impacts of Reused Wastewater

- □ Obtained results showed that wastewater treated in Kuwait contain significant concentrations of estrogens.
- ☐ Threats to human health arises from ingesting estrogens via drinking contaminated water or eating contaminated food.
- □ The likelihood of mixing treated wastewater with drinking water is zero in Kuwait. Further, treated wastewater is not allowed to be used for irrigating edible crops.
- Nonetheless, estrogens can reach humans indirectly via eating meat of animals fed on contaminated grass or drinking contaminated groundwater.
- □ Thus, regulations of estrogens discharges should be urgently developed, as has recently stared in EU, USA, Japan and Canada.

Conclusions and Recommendations

- □ Concentration of estrogens in the influent streams ranged from 0.0 to 474 ng/l, while that in the effluent streams ranged between 0.0 to 233 ng/l
- □ Influent concentration of E1 seemed to increase with the distance of plant from catchment area.
- □ The average removal of total estrogens were 13%, 79% and 68% for Kabd, Suliabiya and Umm-Al-Haiman, respectively.
- □ Operations of WWTPs in Kuwait need to be upgraded/optimized in order to maximize estrogens' elimination.
- □ Kuwait needs to regulate estrogens discharges from WWTPs in order to prevent further pollution of marine areas and ground water by estrogens.

Acknowledgements

□ This study was supported by the Kuwait Foundation for the Advancement of Sciences (KFAS) under the Code: P214-42WE-01.