

Experimental and Numerical Modelling of Constructed Channels in the Desert Sand Dunes for MAR Applications

Afrah Al-Shukaili & Prof. Anvar Kacimov

Department of Soils, Water and Agricultural Engineering Sultan Qaboos University, Oman

Can A Desert Turn Into A Forest?

Overview

- Introduction
- Conceptual Model of Surface Flow
- Field Experiments
- Numerical Model
- Coupling Surface-Subsurface Flow
- Results
- Conclusion and Recommendations
- Other Applications

Introduction

- Large areas of desert dunes across arid regions can be explored for MAR
- Mini sewage treatment plants (STPs of touristic camps and remote villages) can use small-scale infiltration channels.
- The key design question is:
 - What should be the length of the channel to infiltrate all water discharged?

(given a certain topographic slope, roughness of the bed, hydraulic conductivity of the sand, and a specific amount of TTW to be infiltrated)

Cont., Introduction

Conceptual Model of Surface Flow

- a) 3-D sketch of surface flow through a triangular channel,
 b) "Free jet" of surface flow in a cross-section along the channel axis,
- c) Seepage flow in a vertical crosssection perpendicular to the channel axis.

Field Experiments

- The experiment was conducted at Sultan Qaboos University (SQU), Oman.
- Applying constant water discharge Q (L³/T)

Numerical Model

• Richard's equation has been solved by HYDRUS2D (Šimůnek et al., 1999)

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left[k_{un}(p) \left(\frac{\partial h}{\partial x} \right) \right] + \frac{\partial}{\partial z} \left[k_{un}(p) \left(\frac{\partial h}{\partial z} \right) \right]$$

 $h \rightarrow$ the total (piezometric) head [cm]

- $p \rightarrow$ the pressure head [cm]
- $\theta_v \rightarrow$ the volumetric moisture content [cm₃/ cm₃]
- $t \rightarrow \text{time [day]}$

x & $z \rightarrow$ the horizontal & vertical Cartesian coordinate [cm]

 $K_{un} \rightarrow$ the unsaturated hydraulic conductivity [cm*day⁻¹]

Coupling Surface-Subsurface Flow

- Channel's cross-section, a rectangle (x, z) = (25, 50) cm
- **The domains:** sand (*K*_s=0.91 cm/min)
- **Hydrostatic head** → wetted parameters
- **Free drainage** → lower boundaries
- **Impermeable** → other sides
- The bottom segment GJ outlet was selected to determine the infiltration rate at steady-state conditions.

Cont., Coupling Surface-Subsurface Flow Numerically

HYDRUS-computed $q_i(H)$ values for various channel depths

H (cm)	q _i (cm²/min)
0.5	6.974
0.7	8.096
1.0	9.450
1.2	10.417
1.5	11.629
1.7	12.500
2.0	13.626
2.2	14.395
2.5	15.259

Interpolation function and interpolation polynomial qi [H] has been obtained by *Wolfram's Mathematica*:

 $q_i[H] = -163871.+202262.$ H - 96917.1 H² + 23936. H³ - 3192.48 H⁴ + 218.515 H⁵ - 6.01235 H⁶

Results

 Dimensionless depths of the jets as functions of dimensionless longitudinal coordinate for:

 W_0 =0.05 m, H_0 =0.025 m, n=0.02 s/m^{1/3}, topographic slope of 5°

• Curves 1-3 correspond to $K_s = 1.4^{*10^{-2}}$, 8.9^{*10⁻⁴} and 2.0^{*10⁻⁴} m/s.

Conclusion and Recommendations

- Rural areas in arid regions, particularly sand dunes, are expanding and require sustainable and independent water supply for their desert agriculture and domestic consumption.
- Evaluate the length of propagation of a "free jet" downslope from the inlet where a given quantity of water in MAR is released.
- Solve optimal shape design problems with selection of the seepage losses and channel's cross-sectional area (or volumetric flow rate) as benchmark.

Cont., Conclusion and Recommendations

Other Applications

- The results of this paper can be used not only for planning MAR operations but also for furrow irrigation in desert agriculture of arid lands.
- The results can be also used for evaluation of "transmission losses" from large-size wadi channels flowing after flash floods.

Acknowledgements

• This research was accomplished as part of SQU-funded project IG/CAMS/SWAE/18/01.

Thank you

Afrah Al-Shukaili,

PhD student in Soils and Water Management, Department of Soils, Water and Agricultural Engineering, College of Agricultural and Marine Sciences, Sultan Qaboos University Al-Khod 123, PO Box 34 Sultanate of Oman Emails: farah93019@gmail.com ; s93019@student.squ.edu.om