

The Effect of Industrial Activities on the Heavy Metals Contamination of Irrigation Waters, Soils, and Plants in Kafr El-Dawar District, Egypt

Emad F. Aboukila

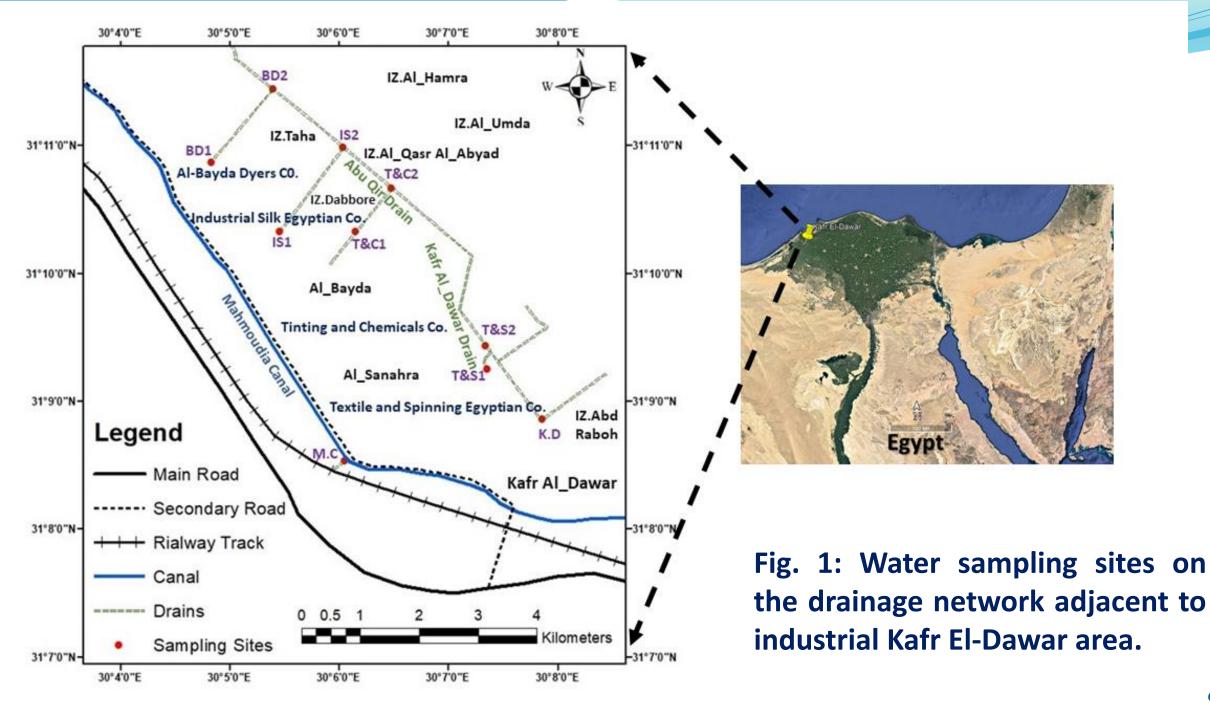
Associate Professor, College of Agriculture, Damanhour University, Egypt, Post Doc., Colorado State University, USA, emad@agr.dmu.edu.eg

Overview

- Introduction
- Methodology
- Results and discussion
- Conclusions and Recommendations
- Acknowledgments

Introduction

- Kafr EL-Dawar district, El Beheira Governorate, Egypt, is an agricultural area, but with extensive industrial activities.
- It contains four major industrial companies, i.e., Textile and Spinning Egyptian (T&S), Tinting and Chemicals (T&C), Industrial Silk Egyptian (IS), and Al-Bayda Dyers (BD) companies.
- These companies unfortunately have been using the agriculture drainage system to dispose their waste effluents, which in most cases contain heavy metals.
- Kafr EL-Dawar agriculture soils suffer from a shortage in irrigation water resources as a general case in north Egypt.


Cont., Introduction

- Agricultural drainage water is currently being utilized as a main or supplementary source of irrigation water in this area.
- The use of such polluted water in soil irrigation raises the risk of contaminating soils with different industrial contaminants such as heavy metals.
- Therefore, the objective of the present research is to evaluate the effect of industrial activities on heavy metals contamination of irrigation water, soils, and growing plant in Kafr El-Dawar district, Egypt.

Methodology

Kafr El-Dawar Industrial area samples

• The samples of water, soils, and plant were collected from sites adjacent to four major industrial companies in Kafr EL-Dawar area (i.e., Textile and Spinning Egyptian Company (T&S), Tinting and Chemicals Company (T&C), Industrial Silk Egyptian Company (IS), and Al-Bayda Dyers Company (BD)). The locations of these Industrial companies are illustrated in Fig (1).

Results and discussion

Table 1. Recommended maximum concentration of studied heavy metals in irrigation water.

Metal	Unit	Recommended maximum concentration ^a	
Cadmium (Cd)	mg.l ⁻¹	0.01	
Cobalt (Co)	mg.l ⁻¹	0.05	
Nickel (Ni)	mg.l ⁻¹	0.20	
Zinc (Zn)	mg.l ⁻¹	2.00	
Lead (Pb)	mg.l ⁻¹	5.00	

^a according to law 48/1982 (Egypt); FAO, 1985; USEPA, 1992; and WHO, 1992; EPA 2004; Kabata-Pendias and Mukherjee (2007).

Table 2: Heavy metals contents (mg.kg⁻¹) of Mahmoudia canal water (M.C), Kafr EL-Dawar drain water (K.D), the outlet effluents of industrial companies (1) and their mouth effluents discharge on agriculture drainage water (2).

	Cd	Zn	Ni	Pb	Со
M.C	0.005 e	0.31 f	0.07 d	0.13 d	0.01 e
K.D	0.02 e	0.86 f	0.19 d	0.34 d	0.03 de
T&S1	0.13 c	2.95 de	0.97 c	0.72 d	0.02 e
T&S2	0.07 d	2.08 e	0.73 c	0.42 d	0.03 de
T&C1	0.27 a	5.58 b	1.96 a	9.53 a	0.43 a
T&C2	0.16 c	4.36 c	1.37 b	7.11 b	0.15 c
IS1	0.22 b	4.85 bc	1.47 b	8.21 b	0.09 d
IS2	0.13 c	2.41 e	0.92 c	5.43 c	0.05 de
BD1	0.16 c	6.79 a	1.51 b	7.53 b	0.41 a
BD2	0.09 d	3.48 d	1.03 c	5.09 c	0.23 b

M.C: Mahmoudia canal; K.D: Kafr EL-Dawar drain; T&S: Textile and Spinning Egyptian Company; T&C: Tinting and Chemicals Company; IS: Industrial Silk Egyptian Company; BD: Al-Bayda Dyers Company. ^a Within columns, values followed by different lowercase letters are significantly different at $\alpha = 0.05$.

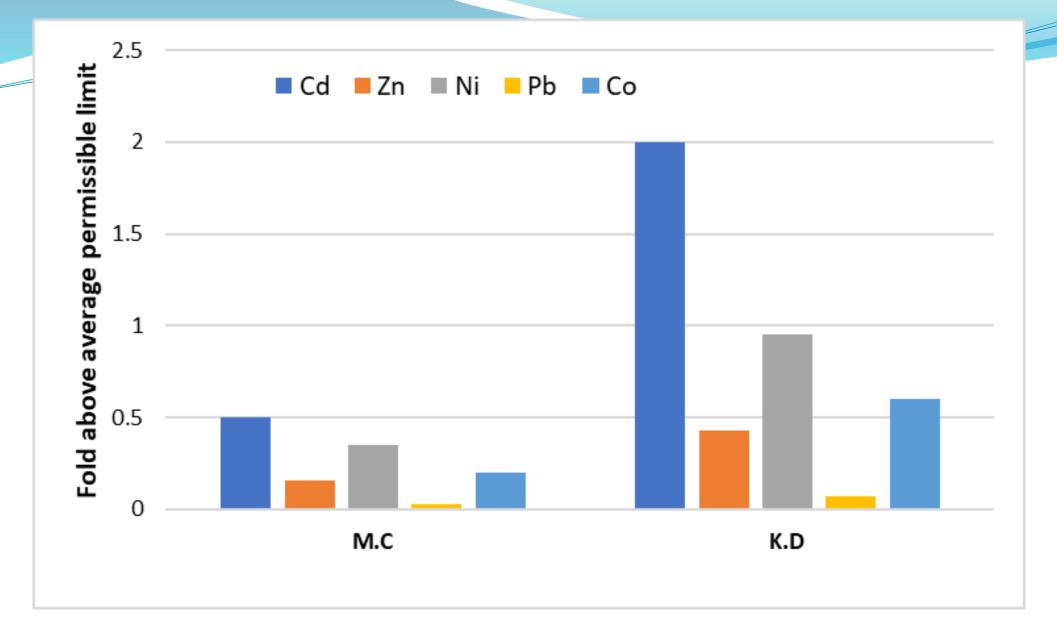


Fig. 2: Heavy metals contents of Mahmoudia canal water (M.C), Kafr EL-Dawar drain water (K.D) expressed as fold above permissible limit.

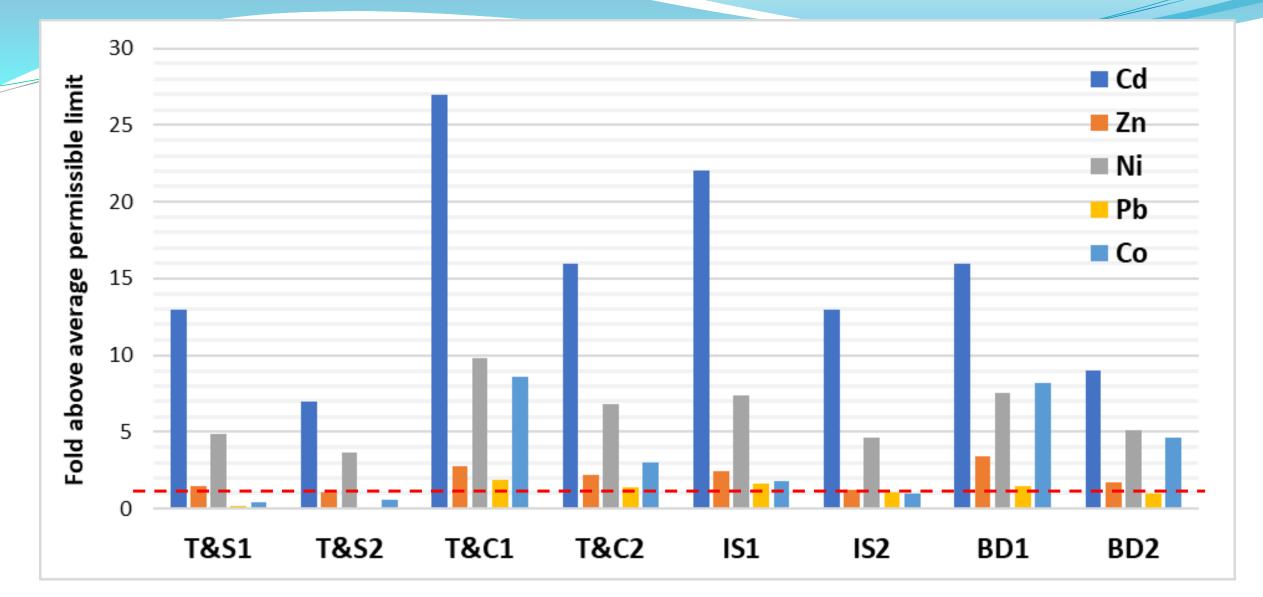


Fig. 3: Heavy metals contents, expressed as fold above permissible limit, of the outlet effluents of industrial companies (1) and their mouth effluents discharge on agriculture drainage water (2).

Impact of industrial wastewater on the heavy metal contents of soils

Table 3: Total heavy metals contents (mg.kg⁻¹) of the studied soil samples.

Analyte	M.C Soil ^a	T&S Soil	T&C Soil	IS Soil	BD Soil
Pb	25.50 c	33.15 c	241.60 a	211.70 a	142.30 b
Ni	28.18 c	53.61 b	88.30 a	60.72 b	56.10 b
Cd	1.12 c	3.56 b	7.13 a	8.32 a	6.68 a
Zn	56.2 c	62.35 c	305.2 a	346.3 a	215.5 b
Со	5.40 c	15.60 b	20.40 a	13.02 b	12.06 b

^{*a*} M.C soil: irrigated from Mahmoudia canal, T&S Soil: adjacent to Textile and Spinning Egyptian Company, T&C soil: adjacent to Tinting and Chemicals Company, IS soil: adjacent to Industrial Silk Egyptian Company, BD soil: adjacent to Al-Bayda Dyers Company.

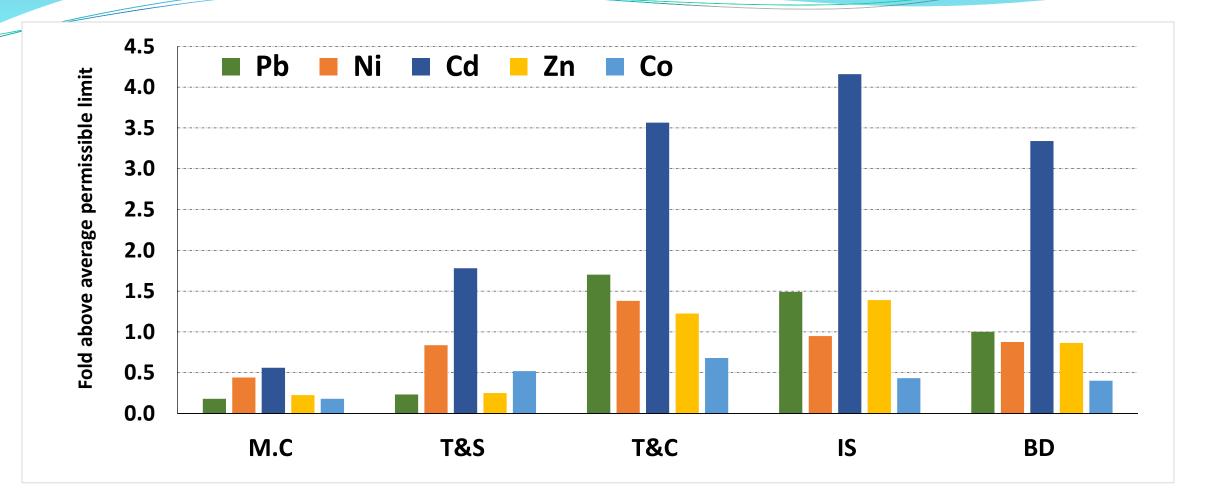


Fig. 4: Relative toxic effects of total heavy metals at different sampling sites, expressed as fold above average permissible limit of different heavy metals in agricultural soil.

Heavy metals contents in some plants grown in the tested polluted soils

Table 4. Heavy metals contents (mg.kg⁻¹ dry matter) in some plants grown in the tested polluted soils.

Crop ^{<i>a</i>}	Heavy metals mg.kg ⁻¹	M.C Soil	T&S Soil	T&C Soil	IS Soil	BD Soil
	Pb	13.7 c	_	68.6 a	_	42.4 b
	Cd	ND ^{<i>b</i>} b	_	3.1 a	-	2.8 a
Wheat	Ni	9.3 c	-	26.4 a	-	21.3 b
	Co	3.7 b	-	14.1 a	-	15.6 a
	Zn	9.8 b	_	28.3 a	-	28.6 a
	Pb	11.7 d	15.6 d	76.6 a	38.0 c	52.0 b
	Cd	ND e	0.5 d	3.7 a	1.7 c	2.2 b
	Ni	7.2 d	15.3 c	38.3 a	19.3 c	30.4 b
	Co	4.4 c	10.3 b	18.4 a	12.8 b	13.5 b
	Zn	11.3 c	17.5 c	53.2 a	28.4 b	28.2 b
Faba bean	Pb	19.3 b	21.3 b	_	56.4 a	_
	Cd	0.2 c	0.6 b	-	1.3 a	-
	Ni	8.1 b	12.8 a	-	12.4 a	-
	Co	3.9 b	9.8 a	-	10.5 a	-
	Zn	14.5 b	21.6 a	-	25.4 a	-

^{*a*} Clover (*Triflium sativum*), Faba bean (*Vicia faba*), and Wheat (*Triticum aestivum*). ^{*b*} ND: Not detected.

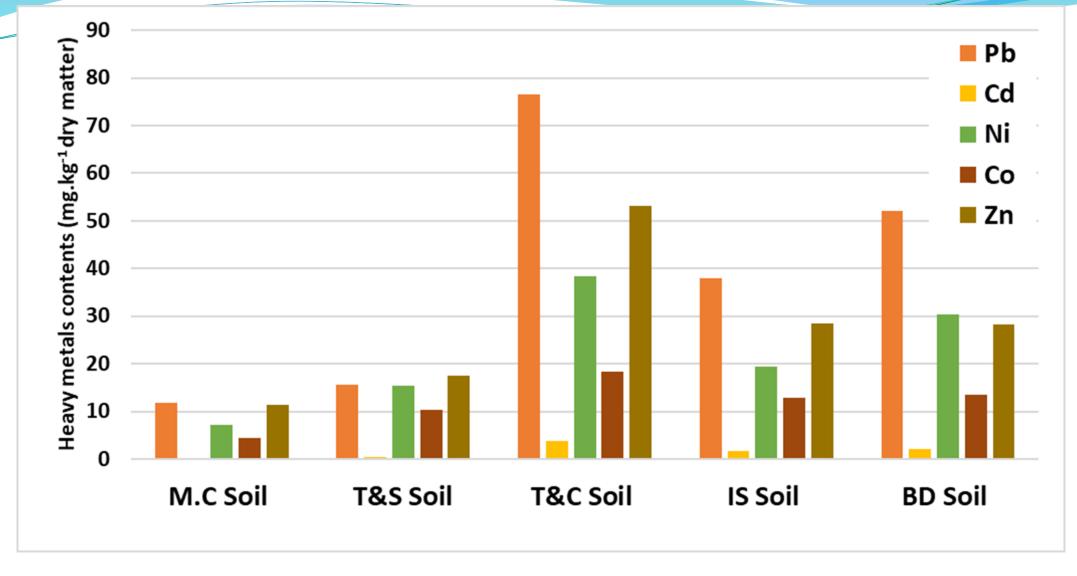


Fig. 5: Heavy metals contents (mg.kg⁻¹ dry matter) in some plants grown in the tested polluted soils.

Conclusion and Recommendations

- Results showed that a clear risk associated with the irrigation of soils and crops with agricultural drainage water mixed with industrial waste effluents in relation with the heavy metal contents.
- The long term of soil irrigated by this water, will cause deterioration to agricultural land, harmful effect on crop quality and quantity, and cause environmental problems.
- Therefore, it is important to issue laws and limitations for these companies to prevent them from polluting agricultural soils.
- Industrial establishments should treat their wastes before disposal and dump them under strict measures.
- Aqueous wastes, under all circumstances, should not be discharged into irrigation water canals.
- Newly planned industrial activities should take place away from population masses, as well as from the agricultural land.

Acknowledgements

• The author thanks the college of Agriculture, Damanhour University, Damanhour, Egypt, for funding this research.

Emad F. Aboukila

Associate Professor, College of Agriculture, Damanhour University, Egypt. Post Doc., Colorado State University, USA, emad@agr.dmu.edu.eg