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C’s

are 1nefficient.

gl s that apply water at the

time and amount have been critical for good

plant growth and hence crop productivity.




WHAT IS
ARTIFICIAL

INTELLIGENCE,
ORAI?

When it comes to farming, artificial intelligence is a
fancy name for ‘turning data into useful information
to conserve irrigation water and better management’.

“Al can give us new information sooner for traditional
farming decisions. But it can also give us information
on new things we would once never have dreamed
of,”

“But the most exciting part of bringing Al into farming
is its power to make predictions. For example, we can
make an accurate, evidence-based yield prediction
even before we plant a crop.”

The use of meteorological, soil data and plants
indicators for decision-making in irrigated
agriculture has been a fully settled using imperical
equations.



Enhances water-use efficiency.

IMPORTANCE Improves crop productivity and resilience.
OF SMART

Reduces energy and labor costs.

IRRIGATION
WITH Al Prevents groundwater depletion and soil salinity.

Supports climate change adaptation.




MECHANISM
OF AI-BASED

SMART
IRRIGATION

1. Data Collection: sensors, weather stations,
satellites.

2. Data Processing: loT + Al integration.

3. Prediction Models: machine learning for crop
water needs.

4. Automated Control: precise irrigation
scheduling.

5. Results: Increase the irrigation efficiency



OGLOBAL
OEXPERIENCES
> O OF Al IN
IRRIGATION
AND WATER
MANAGEMENT

® United States (California)

®* Faced with drought, farms adopted Al + loT systems for real-time soil

moisture monitoring.

®* IBM Watson Agriculture developed predictive models using weather and

satellite data.
* Some farms reported 25% water savings. (Twarakavi et al.2021)

* “Al-based irrigation scheduling can reduce water usage by up to 30%
while increasing crop yields by 20% in Hawaii.”

. China

*Project in Hebei Province uses Al with drones and satellite imagery to

monitor crop growth.

*Provides field-specific irrigation recommendations instead of uniform

watering. (precision agriculture)

*Achieved 20% reduction in water use and higher grain productivity



0 The Murray-Darling Basin conducted an IoT and Al decision support system
pilot project that cut water usage by 35% without affecting cotton production

rates (Parr et al., 2022).

- In India, the results of studies have shown that the use of artificial
Intelligence tools is a viable alternative to increase crop production and
efficiency in the use of natural resources, among which water is one of the

most relevant (Udutalapally et al., 2020).

O The Tamil Nadu Agricultural University in India built a low-cost [oT-Al
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20% while attracting use from the small farmer community (Ahmad & Nabi,

2021).




AUSTRALIA

Outcomes and Impact
The adoption of Al-powered irrigation has provided measurable benefits:

Water Savings: Farms using these systems have reported up to 25% savings in water usage, a crucial factor in
drought-prone regions

Increased Yields: Proper water management leads to healthier crops and increased yields, boosting farm profitability
even for small-scale operations.

Sustainability: By reducing water waste, small farms can also lower their environmental footprint, contributing to
more sustainable farming practices.

Challenges: Initial setup costs can be a barrier, though these are often offset by long-term savings in water and
increased crop yields. Farmers may also need minimal training to understand the basic operation of Al-powered
irrigation.

Lessons for Similar Businesses: For small farms, starting with an Al-powered irrigation system provides a low-risk
entry into the use of Al technology. This 1s an easy-to-adopt solution that requires minimal ongoing management,
making it ideal for operations with limited technical expertise.
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Summarize the challenges as follows:

1. *Data quality and availability*: Inaccurate or incomplete data can affect Al model
performance.

2. *Sensor reliability™: Faulty sensors can provide incorrect data, impacting Al-driven decisions.

3. *Complexity of water systems™: Interactions between soil, climate, and crops can be difficult
to model accurately.

4. *Scalability*: Al solutions may not be scalable to different farm sizes, crop types, or regions.

5. *Interpretability™: Understanding Al-driven decisions can be challenging for farmers and water
managers.



6. *Integration with existing systems™: Al solutions may require integration with
existing infrastructure and systems.

7. *Cost and accessibility™: Implementing Al solutions can be costly, and accessibility
may be limited in rural areas.

8. *Cybersecurity™: Connected systems can be vulnerable to cyber threats.

9. *Regulatory frameworks™: Existing regulations may not support the use of Al in
irrigation water management.

10. *User adoption™: Farmers and water managers may need training and support
to use Al-driven solutions effectively.
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5 Types of Irrigation System
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Irrigation System

Irrigation System are Important for Several Reasons
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_ TABLE 2 Summary of atmaosphere-based precision lrrigation control approaches.

TABLE 1 Summary of soll-based precision Irrigation control approaches, Author Year Scnnngl Applhﬁon xop‘ ModdiuglContmI
Measurement approach
Author Year  Sensing/Measurement Application scope Modeling/Control
approach
el ey o : : e b wor Barker et al 2018 X X X VRI with remote sensing based water balance model
Andugula et al 017 x X Gaussian process regression . : . ;
_ Bhtti et al. 2019 X satellite and airborne imagery-based VRI
Bazzi ef al, 2019 X X Fuzzy Cmeany algprithm
de Benedetto et ol W % x Keging with external dri Dominguez-Ninoetal. XX «x X X model-predictive control (IRRIX saftware)
Benzekri and Refouft 2006 X X X Anticipatory on/off control Farooque e il 2021 N d«V kam'mg model basad ET th'mm
Gyl sl . BRI i Gy Fourati et al. 0 x X X X FAQ36 ET model-based on/off control
Chen et al. 2020 X Genetic algorithm
— - ; P Gobbo et al N9 x X X VRI with dynamic zone delineation
Guetal wmo x x x NN-based anloff control Gordin et al. X9 x X X X Hargreaves Samani ET model-hased on-off control
Vil dad i il . Oy poeiatoof o Wor ekl Incrocei et al. o x X X X Soil moisture-based vs. ET-based automated drip irrigation
fimenez et al. 2020 X X LSTM neural network
) Linker et al 18 X 1 MPC with real-time multi-objective optimization
Liv and Xu 2018 % X Onlolf control
b T ; . Ot tonil Lorite et al. 015 X 1 weather forecastsbased on/off irrigation control
Cx.h.u il WY x X 1 MPC with chosed loop scheduling Lomoya ot al e «x X X X model-predictive control with soil moisture measurement
" R : I 9 skt rcsleg i Maetal Ny ox X x weather forecast-derived ET-hased delicit irrigation
Song et al 2016 x X % Deep beief network (DBN) : ! _
e d al . . " secdrward 0. AN Pelosi et al 2009 X X X calibrated Hargreaves Samani for ET modeling
Taeng etal 2018 X X x Deep convolutional neural etwork Robinson 217 X X X plant specific Penman-Montesth model-based control
Weietal mo s ' Onfoff control Ray 0 x X X X stochastic receding horizon approach
Roaa: o ; OM{ oo Sidhu et ol XX X X Regression-based on/of scheduling
Xiao et al. 2010 X X X anfoff control 1. \ .
Theo il - ; e, T cntland iy by sl Tsakmakis et al Ni6  x X X X interoperable model coupling for irrigation scheduling (IMCIS)




Materials & Methods

Reference Evapotranspiration

FAQO Pan methodologies (ET,_,,,)

ET,_pan = Epan (0.61 + 0.00341. RHypeqn — 0.000162. Uz RHyyeqn — 0.00000959. uy. FET
+0.00327.uy . In(FET) — 0.00289.u,. In(86.4 u,)

—0.0106.In(86.4 u,) .In(FET) + 0.00063. [[n(FET)]*.In(86.4 uy))

FAO Penman-Monteith approach (ET, pyy)
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Materials & Methods

Actual Crop Coefficient
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o: These estimates differ between 6200 and 55,000 m3 /ha. Alazba (2001) estimates water requirement to be between
E 15,000 and 55,000 m3 /ha, depending on the irrigation system or leaching requirement.

e Kassem (2007) monitored water requirements in the Qassim region, using the soil water balance method, and he

>~ determined the annual water use with drip irrigation as 16,400 m3 /ha, with a density of 100 trees/ha.

Al-Amoud et al. (2012) estimated the actual water use in the range between 21,360 and 28,290 m3 /haq, for a
density of 100 trees/ha.

Ismail et al. (2014) calculated water requirement based on Penman—Monteith for ETo, Kc ranged from 0.8 and
1.0, and the evapotranspiration area (23 m2 / tree), to be 7300 m3 /ha, for a density of 100 trees/ha.

In Kuwait, date palm water requirement was determined using drainage-type lysimeters through water balance
and ranged between 23,392 and 27,251 m3 /ha. (Bhat et al., 2012)

Alharbi et al. (2022). Estimated date water requirements to be 8200 m3 /ha




ble4 Comparison between Penman—-Monteith calculations and actual amount of applied water in the different sites, and increase in w
tio (%) compared to Penman—Monteith method

te Penman—-Monteith Water balance method Actual applied water (m3/ha/year) The increase in water ratio (%)
method (m*/ha/year) (m*/ha/year) compared to Penman-Monteith
method

Field study Farmer adjacent Field study Farmer adjaci

edina 11,305 13,717 16.0 30.8
ibuk 9463 12,277 224 40.2
akkah 9692 12,220 24.7 40.3
| Jouf 11,252 13.340 20.8 33.2
lyadh 10,007 12,050 139 28.5
assim 10,035 12,880 14.6 335
ail 10,272 12,620 21.2 36.6
st Region 10,082 12,610 15.6 325
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Reference Evapotranspiration, ETo, Crop Evapotranspiration, ETc , Actual ‘-\ \\ L:)‘J_ "

Evapotranspiration by Eddy Covariance, ETa Eddy and by Scintillometer, ETa Scint | '1/ [
~

Eta Eddy/Eto % EtaScint/Eto % Eta Eddy/Etc %  Eta Scint/Etc %
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Comparison between actual evapotranspiration measured by Eddy
Covariance and Scintillometer, reference evapotranspiration estimated from
Penman-Monteith equation and crop evapotranspiration calculated from
ETo and the weighted mean of the crop coefficient Kc.
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s only be accurate enough to
o apply and when.

ule of thumb to follow when developing an irrigation

scheduling tool is to keep it simple and easy to understand.

® A calibration of soil moisture sensor is must.
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MOST IMPORTANT FACTOR

Good soil to sensor contact
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Calibration of Soil Moisture Sensors (ECH, 0-5TE) in Hot and
Saline Soils with New Empirical Equation
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Riyadh 11431, Saudi Arabia

& Al Mohais'sagricltue Parm at Thadiq Thadi 1195, Saudi Aaba

* Comespondence: rasoulksu edusa

Abstrack: The use of soil moisture semsors is a practice appled to mprove irrgation water manage-
ment, ECH2OHSTE sensors are increasingly being used to estimate the volumetric water content
(VIVC). I view of the importance of the effcent use of these device, six main factors affcting
the accuracy of sensor measturements were studied: soil moisture levels. soil salinitv. temberature,



Materials & Methods

Normalization of inputs
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Input layer

Artificial neural network (ANN) models

Summation & Activation
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Hidden layer

De-normalization of the output
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Conclusions

* 1. Data quality and availability: Implement data validation processes
to ensure accuracy.

* 2. Sensor calibration: Regularly calibrate sensors to prevent drift and
ensure reliability.
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