

WSTA 15th GULF WATER CONFERENCE

Water in the GCC, The Role of Technology in Effective Water Management 28-30 April 2024, Doha, Qatar

Business Model for Small-Scale Decentralized Wastewater Treatment and Sludge Management in Jordan

Prof Dr. Emad Al-Karablieh

Department of Agricultural Economics and Agribusiness Management School of Agriculture, The University of Jordan, Amman-Jordan Email: Karablie@ju.edu.jo

Overview

- Introduction
- Objectives & Methodology
 - Site Selection
 - Stakeholder Participations
- Results and Discussion
 - Population Context and Demand for DWWM
 - Institutional and Regulatory Framework for DWWM
 - Current Challenges to Business Model in DWWM
 - Ownership of DWWM Systems
 - The Business Model Concept
 - Economic & Financial Viability of Business Model
 - Private-Sector Partnerships
 - Proposed Management of DWWMs
 - Regulation and Control
 - Conclusions
 - Recommendations

Introduction: Importance of DWWTP

- **Environmental Protection:** They treat wastewater locally, preventing pollution of water bodies and preserving ecosystems.
- **Public Health:** Removing contaminants, they ensure safe water and reduce waterborne diseases.
- Water Conservation: DWTS treat water for non-potable uses, reducing freshwater demand.
- Cost-Effectiveness: They are often cheaper and more energy-efficient than centralized systems.
- **Community Engagement:** Implementing DWTS involves community participation and education on wastewater management.
- Accessibility: DWWTS provide wastewater treatment in areas without access to centralized plants, benefiting remote rural and semi-urban communities.
- **Flexibility:** They offer adaptable solutions for diverse settings, treating wastewater from individual homes to entire communities.
- **Sustainability:** Implementing private operations aligns with government policies on public-private partnerships (PPPs) and utility management

Introduction:

Institutional and Regulatory framework for DWWM

National Water Strategy 2023-2040:

- Aims to expand sanitation services and improve infrastructure using decentralized systems where suitable.
- Focuses on efficient management considering health, hygiene, and environmental concerns.

Decentralized Systems Benefits:

 Provides wastewater treatment in remote areas, promoting water recycling for sustainability.

• Reuse Guidelines and Clusters:

Sets quality standards for treated wastewater reuse from smaller plants.

Institutional and Regulatory framework for DWWM

Policy Brief

Decentralized Wastewater Treatment Systems (DWATS) as a Climate Change Adaptation Option for Agriculture in Jordan

SDG - Goal 6 Targets By 2030

- 6.1: Ensure everyone has access to safe and affordable drinking water by 2030.
- 6.2: Achieve access to adequate sanitation and hygiene for all, especially focusing on ending open defecation and addressing the needs of vulnerable groups by 2030.
- 6.3: Improve water quality by reducing pollution, minimizing hazardous, treating wastewater, and promoting recycling and safe reuse by 2030.
- 6.4: Increase water-use efficiency across all sectors,
- 6.5: Implement integrated water resources management
- 6.6: Protect and restore water-related ecosystems
- **6.A: Provide support and capacity building, including wastewater treatment** technologies
- **6.B** The participation of local communities in improving water and sanitation management

Five-Step-Technology Selection Procedure for wastewater treatment plants with a design capacity of up to 5,000 PE

Step One:

Data acquisition/quality assessment of basic data

Step Two:

Develop and confirm selection criteria

Step Three:

Develop and confirm weighting of selection criteria

Step Four:

Analysis of the technology against each of the agreed and weighted criteria

Step Five:

Ranking of all technologies based on combined scoring and weighting results

Locations-of-the-85identified-decentralizedwastewater-treatmentplants

Business Model Concept

- Business models are defined by two categories "who do what" and "who pays for what".
- **The first part** "who do what "concerned how to run the project, legal and administrative issues, ownership, choice of treatment technology, revenues collection.
- **The second parts** "who pays for what" the attention is to define the user groups who will contribute to the revenues of the WW services, degree of aggregation, and clustering service provision.

Objectives

- **Assessment of Current Status:** Evaluate existing DWWM framework, including institutions, laws, roles, and coordination.
- **Recommendations for Improvement:** Provide concise policy suggestions to enhance DWWM setup and coordination.
- Exploring Business Models: Discuss potential DWWM business models considering economic, environmental, technical, legal, managerial, regulatory, and social aspects.

Methodology

- **Business Model Development:** In-depth research to develop a business model for decentralized wastewater treatment systems (DWTS).
- Case Study Selection: Rasoon village in Ajloun was selected due to its relevance to Jordanian rural conditions and groundwater vulnerability, gathering crucial data for detailed investigations.
- **Stakeholder Engagement:** Involved key stakeholders through focus group discussions and interviews with local officials and private vendors related to DWTS implementation.
- **Challenges and Solutions:** Identified and analyzed challenges in legislation, financing, construction, operation, and maintenance for sustainable DWTS,.
- **Financial Modeling and Sustainability:** Conducted thorough financial modeling including infrastructure costs, operational expenses, revenue streams, ensuring the financial sustainability of the proposed DWTS business model.

Results: Population Pressure and Demand:

Sanitation Infrastructure and Financing:

Sewer system coverage is at 68% in 2022, funded by government sources, international aid, and household water bills.

WW Treatment Challenges and Reuse:

Inefficient wastewater treatment plants struggle to meet standards, with treated wastewater mainly reused for agriculture.

Sanitation Methods and Concerns:

Safe sanitation coverage is high but relies on septic tanks or less ideal cesspits, posing pollution risks and maintenance challenges.

Private Systems and Risks:

Areas without public systems use private disposal methods like cesspools, which can lead to pollution and maintenance issues.

The challenges to the business model in DWWM:

Institutional Challenges:

- Lack of clarity in institutional roles, ownership, and maintenance responsibilities.
- Inadequate regulatory framework and certification for operations and maintenance (O&M) systems.

• Private Sector Engagement Factors:

- Long-term financial viability requires stable regulatory and financial conditions, including tariff clarity and subsidy commitments.
- Consumer support and willingness to pay for services are crucial for sustainability.
- Commitment from stakeholders and collaborative support from institutions are needed for sustained revenue streams and broader societal benefits.
- Meeting investor expectations for positive cash flow, returns, and margins is essential for private sector participation.

Ownership Models and Challenges:

- Ownership ranges from state/municipal bodies to commercial/private operators, each with advantages and disadvantages.
- Efficiency differences between public and private sectors are debated, with both facing inefficiencies.
- Municipal or community ownership is favored in Jordan due to land acquisition challenges, aligning with public interest laws.

Ownership Pros and Cons Summary:

- Public Utility: Secured funding, but higher costs.
- Associations: Transparent, but limited rural coverage.
- Municipal Enterprises: Funding options, but political influences.
- Municipal Departments: Flexibility, but lacks technical capacity.
- Commercial Companies: Private investments, but limited funding options.
- Small Private Operators: Efficiency, but limited capacity.

Summary of the business model concept for DWWM:

- **Purpose:** Sanitation coverage and wastewater (WW) treatment, solid waste management.
- Target Customers: Institutions, industries, rural, and semi-urban populations.
- Strategies: Public service provision, private sector participation, or involvement.
- Infrastructure: Sewers System, DWWTPs, reuse systems.
- **Organizational Structures:** Public companies, subordinated water companies, municipalities, private sector (enterprises/companies), cooperatives.
- Ownership: Sole, public, shared, community ownership.
- Capital Investment (CAPEX): Private sector, public sector, municipalities.
- **Source of Finance:** Private sector, DBO (Design-Build-Operate), BOT (Build-Operate-Transfer), government, loans, donations, international cooperation.
- WW Treatment Technologies: Sophisticated or natural-based treatment.
- **Trading Practices:** Connection fees, emptying fees, tariffs, revenues from sales.
- Operational Processes: Collection, transport, treatment, reuse.
- **Culture and Social Factors:** Social acceptance, willingness to cooperate, religious aspects, affordability.

Summary of the economic and financial viability of the business model for DWWM:

Pilot Project in Rasoon Village:

• Utilized 2-stage vertical flow constructed wetland for effective wastewater treatment meeting quality criteria.

Business Model Options:

- Option (1): Relies on tariffs, state budgets, and effluent sales for funding.
- Option (2): Focuses on selling treated wastewater for agricultural use, requiring maintenance and sales activities.

Financial Analysis:

- Capital investment estimated at JD 1.54 million, annual operational expenditure JD 45,800, with potential revenue from reused effluent.
- Tariffs adjusted yearly to cover expenses, return on investment, and profit margin, but challenges remain in matching tariff levels and reducing consumer burdens.

• Key Findings:

- Average incremental cost (AIC) per cubic meter ranges from JD 0.63 to JD 0.77, depending on project lifespan.
- Operational costs higher in dispersed areas, requiring higher tariffs but within affordability constraints.
- Limited opportunities for revenue generation, posing uncertainty and deterring operator interest.

Private-sector partnership options for wastewater treatment

Partnership Options:

- Acquisition, Divestiture: Public facility sold to private partner for private ownership and operation.
- Joint Venture: Private and public partners co-own facility.
- Concession or BOT (Build-Operate-Transfer): Private partner builds, owns, operates facility; transferred to public partner later.
- Turnkey Facility: Private partner designs, constructs, operates facility; public partner retains ownership.
- Full-Service Contract: Private partner operates and maintains facility, public retains ownership.
- Contract Operations: Private partner operates public partner's facilities.
- Contract Management: Private partner manages and supervises public partner's personnel.
- Operations Assistance: Private partner aids in transition or program management for public partner.

Stakeholder Concerns:

- Resistance to full privatization due to profit-driven concerns, limited access, and unequal distribution.
- Balanced approach needed for private efficiency with public oversight to ensure affordability, quality, and accountability.

Proposed management of DWWMs:

Service Contracts:

- Cover labor for repair and maintenance, with equipment purchase by the facility owner.
- Includes preventive maintenance and some operations, but major equipment installation is the owner's responsibility.
- Cost-effective initially but may pose challenges in budgeting for emergency repairs.

Management Contracts:

- Enhance services and reduce government risks.
- Improve system efficiency and service quality, driving organizational reforms.
- Doesn't require capital investment from the management firm, funded by public budget or external sources.

Comparison in Jordan:

- Service Contracts: Grant access to private expertise, lead to efficiency improvements, but limited impact on overall utility management.
- Management Contracts: Enhance services, reduce risks, but require government financing for capital and some operational investments.

Regulation and control for sustainable DWWM in Jordan

Setting Standards for DWWM:

 Need for tailored standards for effluents from decentralized systems alongside a distinct monitoring framework.

• Establishment of a Monitoring System:

Use of reliable monitoring technology, including remote monitoring, to ensure efficient DWWM operations.

Update and Amendment of Legislations:

• Introduce penalties for non-compliance with effluent standards, following polluter-pay principles, and adjust treatment fees.

Certification Body for Technology and Operation:

• Establish a certification body (e.g., JSMO) for technology and operation to ensure compliance and reduce monitoring frequency.

Contract-Based Service Performance:

• Foster a competitive market for outsourcing O&M services for smaller DWWTPs to the private sector, overseen by a national regulator.

Institutional Coordination and Roles:

• Ensure skilled operators and staff for O&M, with clear roles and responsibilities, for successful and sustainable management of decentralized WW infrastructure.

Conclusions and Recommendations

Governance Challenges:

• Lack of clear institutional and legal arrangements for DWWM in Jordan leads to role confusion despite MWI assigning management to WAJ.

• Prioritizing Rural DWWM:

• Small-scale DWWM in rural areas faces higher costs, leading to challenges in sustaining services without subsidies, despite tariffs within affordability estimates.

Revenue Avenues:

 Limited options like selling wastewater to agriculture or obtaining carbon credits are insufficient to reduce tariffs, requiring public budget support for capital investments to attract private investors.

Service Contracts and Regulations:

• Specific regulations and economic incentives are needed for service contracts in smaller areas to ensure high-quality services and financial viability.

PPP Viability:

• Privatization through PPPs like BOT, BOOT, DBO, DBFO, DCMF is applicable for large-scale WW projects and can be adapted for DWWM with guaranteed revenues and treated wastewater volumes.

Adapting to Arid Environments:

• In arid regions, adapting design paradigms, promoting water reuse, and considering environmental impacts are crucial for sustainable wastewater treatment solutions.

Comparative Analysis for Improvement:

• Aligning regulatory frameworks, enhancing private sector engagement, and involving communities are key areas for improving DWWM globally, requiring innovative and adaptable strategies.

Recommendations

- **Establish a Monitoring Body:** Create a dedicated monitoring unit within MWI for DWWMS, to streamline monitoring responsibilities.
- **Encourage PPPs:** Promote Public-Private Partnership schemes for infrastructure development and sanitation system management, reducing immediate cash spending and involving private expertise.
- **Consider Site-specific Solutions:** Opt for economically feasible and environmentally sustainable wastewater systems tailored to specific locations,
- **Introduce Certification Procedures:** Implement certification processes for technology and operations to ensure adherence to standards and enhance system reliability.
- **Implement Remote Monitoring:** Utilize advanced sensor technology for reliable remote monitoring systems, and reducing onsite monitoring needs.
- **Diverse Financing Models:** Explore financing models that incentivize private sector involvement through subsidies, service leasing, tax exemptions, and international assistance.
- Adapt Regulations: Develop regulations considering the effectiveness of small and decentralized treatment systems, promoting decentralized wastewater treatment and reuse at a local scale while meeting regulatory standards.