

Water Accounting Plus to empower reclaimed water in sustainable water balance


Muhammad Khalifa

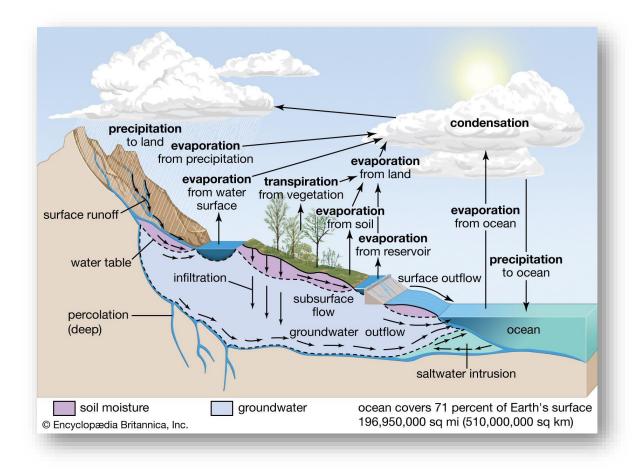
Regional Researcher – Integrated Modeling and Assessment

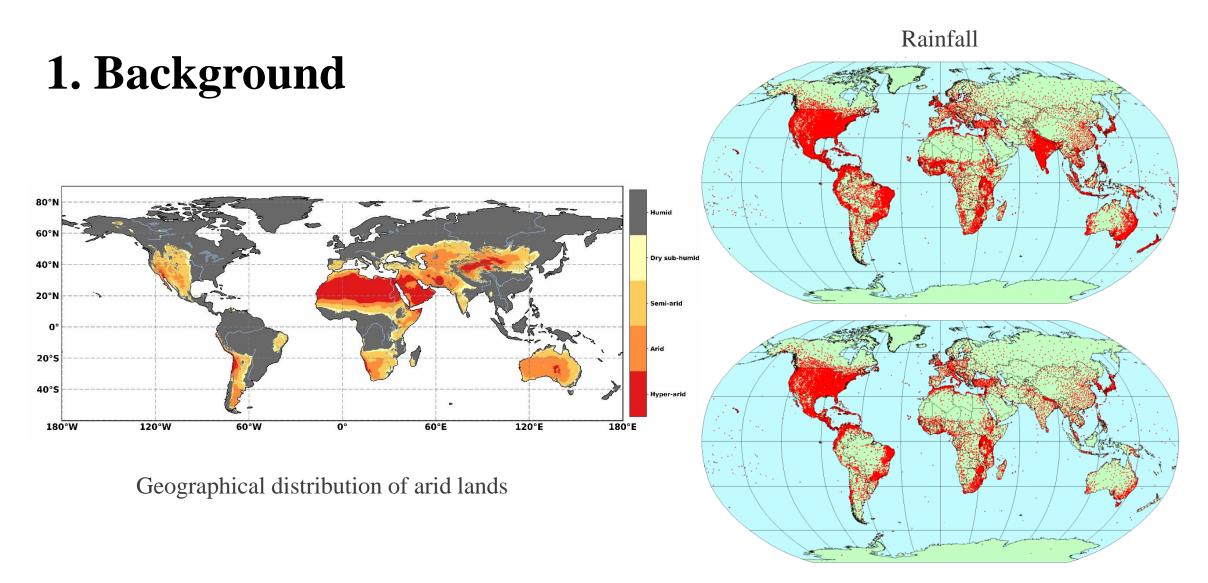
m.khalifa@cgiar.org

Water management challenges

• Different stakeholders, with different goals, different terms, and different information needs

• Silos approach of management

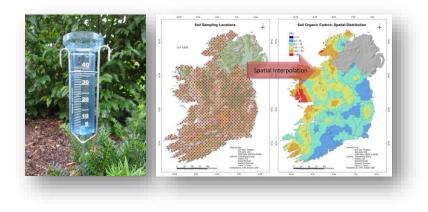

"Traditionally, water quantity and quality have been managed separately" (Karimi et. al., 2024)



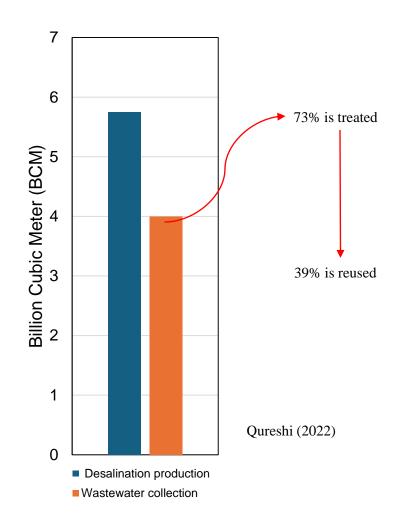
"Breaking silos takes time and energy, but it is worth it."

Peter Binder, Director-General of MeteoSwiss and the Swiss Permanent Representative to the World Meteorological Organisation (WMO)

• Limited data


Temperature

Sometimes, ground data are hard to obtain



Gaps in time series

Lack of spatial dimension

- Hidden opportunities and untapped potentials
 - Massive opportunities in using treated wastewater in the GCC to reduce pressure on available water resources.
 - ✓ While freshwater resources are becoming scarcer, treated wastewater is becoming more abundant. Therefore, discarding wastewater as an economic good has significant costs.

Standardized approaches that promote whole-water cycle understanding, integrated management and overcome data challenge is a key solution

System of Environmental Economic Accounting for Water (SEEAW)

http://www.zaragoza.es/contenidos /medioambiente/onu//newsletter12 /905-eng.pdf

FAO's Aquastat

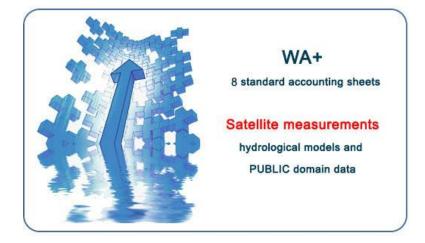
http://www.fao.org/nr/water/aquastat /main/index.stm

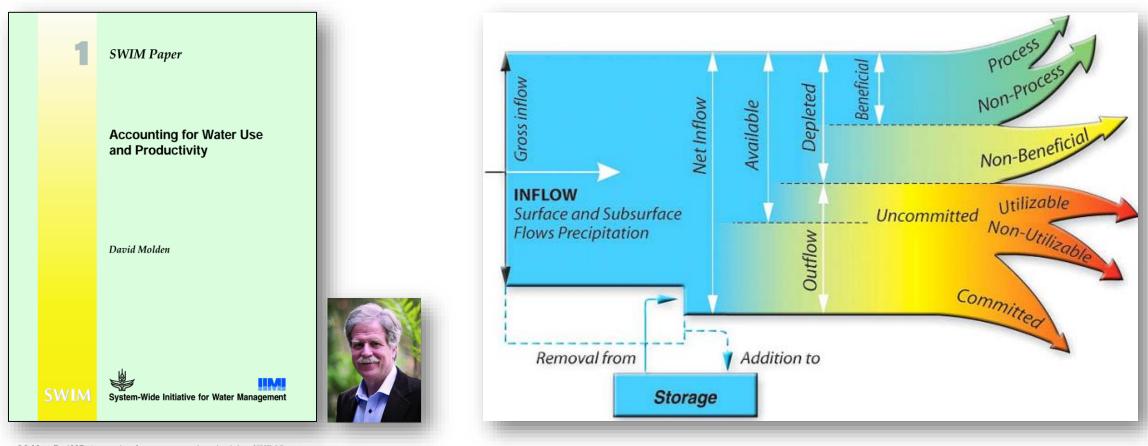
3Water Accounting Standard of Australia.

<text><text><text><text><image><image>

http://www.bom.gov.au/water/standards/d ocuments/awas1_v1.0.pdf Water Accounting Plus (WA+)

http://www.wateraccounting.org/


Process	Low end performance	High end performance	WA+	SEEAW
	description	description		
	*	****		
etal I		Internation	*	****
Field measurements involved	Few	Intensive	****	**
Remote sensing measurements	No remote sensing	Intensive remote sensing	****	**
Land use classes	Minimum attention	Maximum attention		*
Economy	No attention	Maximum attention	*	
Water quality	Not accounted for	Included	*	***
Temporal scale	Annual	Weekly	***	*
Consumptive use	Maximum attention	Minimum attention	****	**
Hydrological cycle	A few terms only	All terms	****	*
Natural vegetation	No attention	Fully explored	****	*
Withdrawals general	Minimum attention	Maximum attention	****	*
Withdrawals domestic & industry	Minimum attention	Maximum attention	**	****
Local reuse of water	No attention	Measured	*	****
Return flow	Minimum attention	Maximum attention	****	**
Surface water	Not accounted for	Measured	***	****
Groundwater	Not accounted for	Estimated	***	**
Crop production	Detailed estimates	Not accounted for	****	*
Crop water productivity	Not accounted for	Estimated	****	*
Greenhouse gas emissions	Not accounted for	Estimated	****	*
Carbon sequestration	Not accounted for	Estimated	****	*
Ecosystem services	Detailed estimates	Not accounted for	*	****
Stocks (i.e. assets)	Not accounted for	Measured	***	****
Data consistency	Agency dependent	Single source	****	*
Access to results	Not accessible	Website with data	****	**
Understanding	Complex	Simple	****	**
Implementation	High efforts	Little efforts	****	*
Communication tool	No	Yes	****	**


After Bastiannssen et al., 2015

- A Standard framework
- Promotes whole water cycle management
- Help navigating data challenge in data-scarce regions
- Can be implemented at different operational scales

The ultimate goal of the WA is to

"track inflows, assets, liabilities, stocks and reserves for a particular area over a period of time" (Karimi et. al., 2013a, p. 1)

Molden, D. 1997. Accounting for water use and productivity. SWIM Paper 1. Colombo, Sri Lanka: International Irrigation Management Institute. Available online at: http://www.iwmi.cgiar.org/Publications/SWIM_Papers/PDFs/SWIM01.PDF D. Molden

Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements

P. Karimi^{1,2}, W. G. M. Bastiaanssen^{2,3}, and D. Molden⁴

¹International Water Management Institute, Battaramilla, Sci Lanka ²Faculty of Civil Engineering and Goosciences, Water Management Department, Delft University of Technology, Delft, The Netherlander, Wageningen, The Netherlands ³eLEAF Competence Centre, Wageningen, The Netherlands

Correspondence to: P. Karimi (p.karimi@cgiar.org, p.karimi@tudelft.nl)

Received: 25 October 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 13 November 2012 Revised: 11 March 2013 – Accepted: 13 March 2013 – Published: 4 July 2013

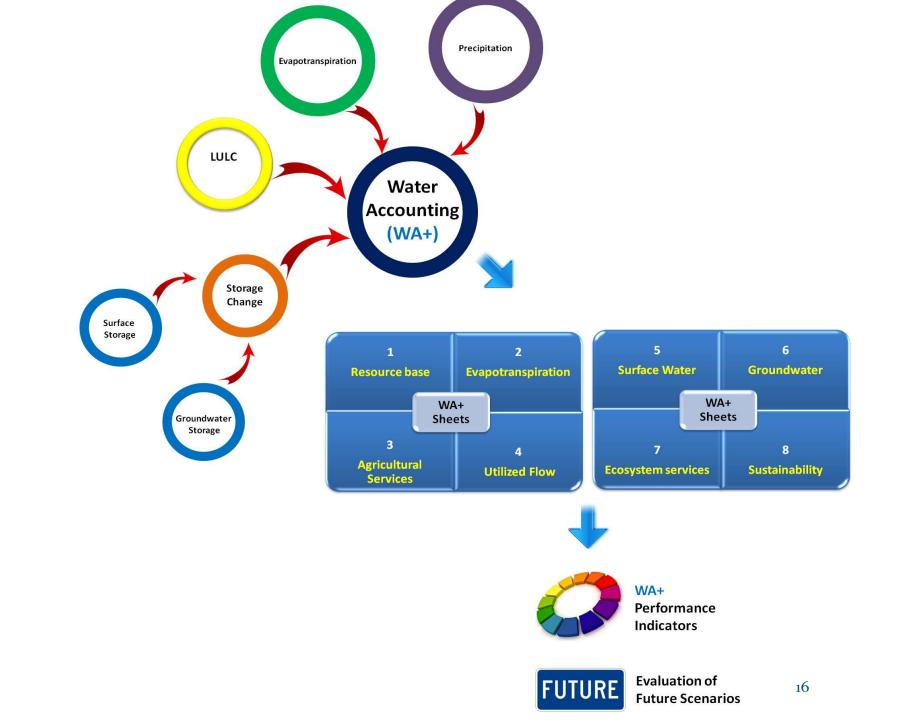
Published by Copernicus Publications on behalf of the European Geosciences Union.

Karimi P., Bastiaansses W. g., and Molden D., 2013a. Water accounting plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements. Hydrology and Earth System Sciences, 17, 2459-2472.

Karimi P., Bastiaanssen W., Molden D., and M. J. M. Cheema M., 2013b. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin. Hydrology and Earth System Science, 17, 2473–2486. P. Karimi

W. Bastiaanssen

D. Molden

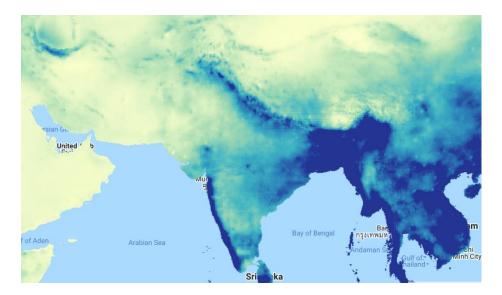

M. J. M., Cheema

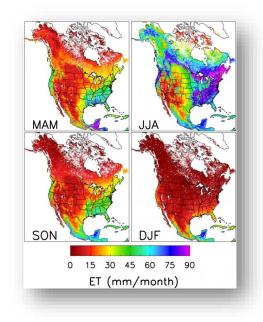
$\Delta S = P - ET - Q - R$

Where: ΔS is the change in storage in soil, P is precipitation, Q is runoff, ET is evapotranspiration and R is the average catchment recharge

➤ The classical approach of estimating the water balance is by using ground-based measurement for these parameters (Oki et. al., 1995).

 \succ WA+ uses public-domain remote sensing data.




CHIRPS (Precipitation)

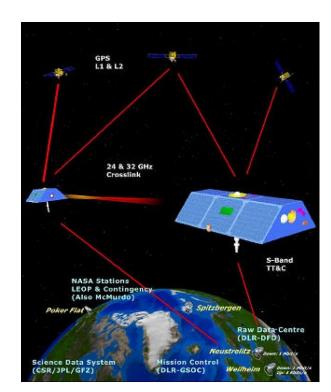
MOD16 (Evapotranspiration)

Advantages of WA+

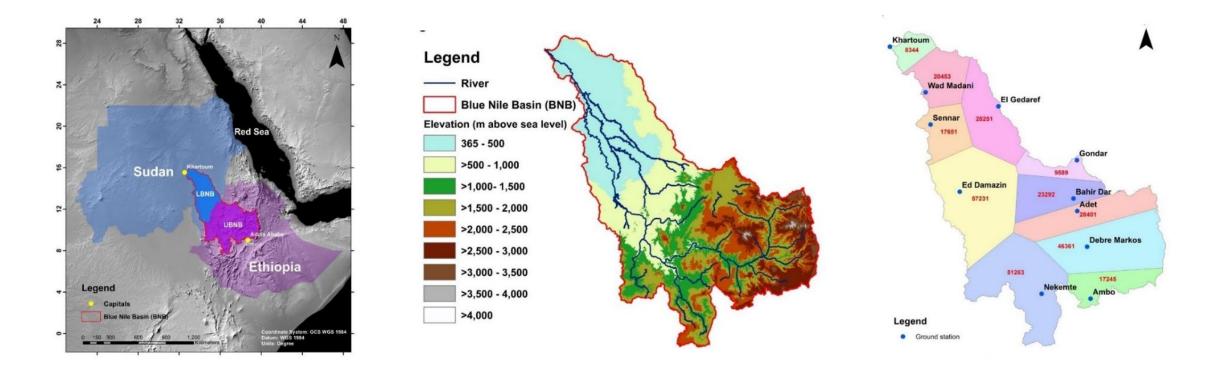
1. Using public domain remote sensing data, which offers a way for standardized and transparent framework for data collection (Karimi et. al., 2013a).

Climate Hazards Center, UC Santa Barbara https://www.chc.ucsb.edu/data/chirps NASA/EOS project http://www.ntsg.umt.edu/project/mod16

2. The major advantage of the WA+ approach is that water balance could be estimated for areas with limited or no ground-based data


The water accounting information can be used for further analysis, for instance:

- Climate change
- Land cover/land use change
- Water Management
- Develop unconventional water resources


WA+ Procedure

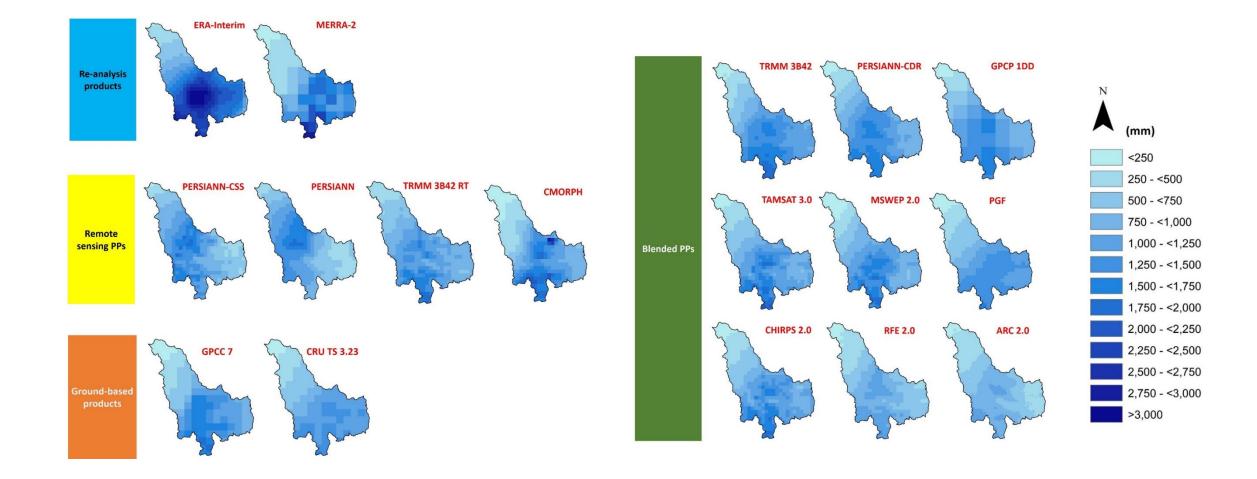
• 1. Select the most suitable datasets

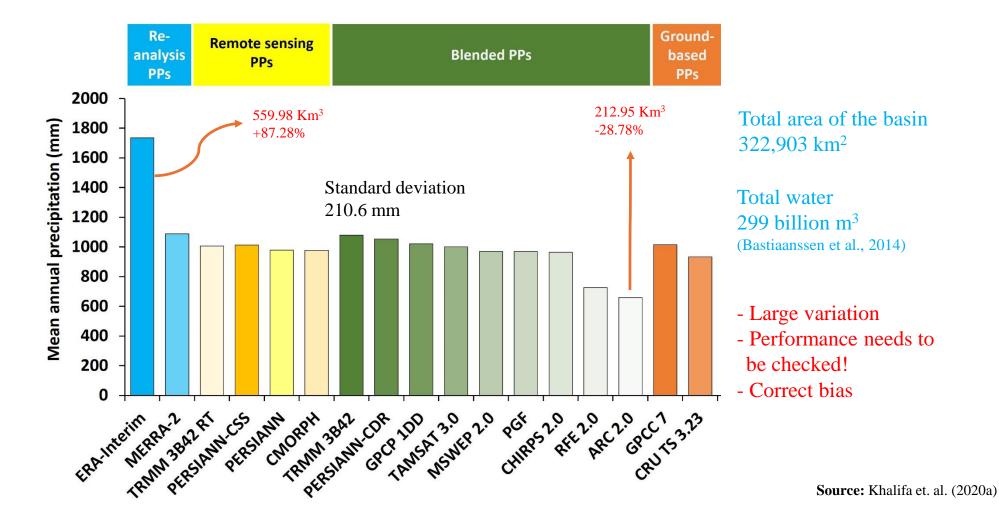
No.	Factor	Source	Spatial coverage
1	Provinitation	TRMM	Global
	Precipitation	GPM	Global
2	Evapotranspiration	MOD16	Global
3	Soil Moisture	SMAP	Global
4	Runoff/stream flow	GLDAS	Global
5	Groundwater storage	GRACE	Global
6	Reservoir and lake level height	Jason-2	Global

Case study: Rainfall over the Blue Nile Basin

40+

Public-domain precipitation products




Re-analysis of atmospheric model

Source: Khalifa et. al. (2020a)

Multi-year mean precipitation over the Blue Nile Basin (2001-2005)

• 2. Categorize landuse classes into four main classes

Conserved land use	Utilised land use	Modified land use	Managed water use
Reserves or national parks	Closed natural forests	Plantation trees	Irrigated pastures
Areas set aside for conservation	Tropical rain forest	Rainfed pastures	Irrigated crops
Glaciers	Open natural forest	Rainfed crops	Irrigated fruits
Coastal protection sites	Woody savanna	Rainfed fruit	Irrigated biofuels
	Open savanna	Rainfed biofuels	Reservoirs & canals
	Sparse savanna	Rainfed recreational parks	Greenhouses
	Shrub land	Fallow land	Aquaculture
	Natural pastures	Dump sites	Residential areas & homesteads
	Deserts	Oasis & wadis	Industrial areas
	Mountains	Roads and lanes	Irrigated recreational parks
	Rocks	Peri-urban areas	Managed wetlands & swamps
	Flood plains		Inundation areas
	Tidal flats		Mining
	Bare land		Evaporation ponds
	Waste land		Waste water treatment beds
	Moore fields		Power plants
	Wetlands & swamps		
	Alien invasive species		
	Permafrosts		

After Karimi et. al., 2014b

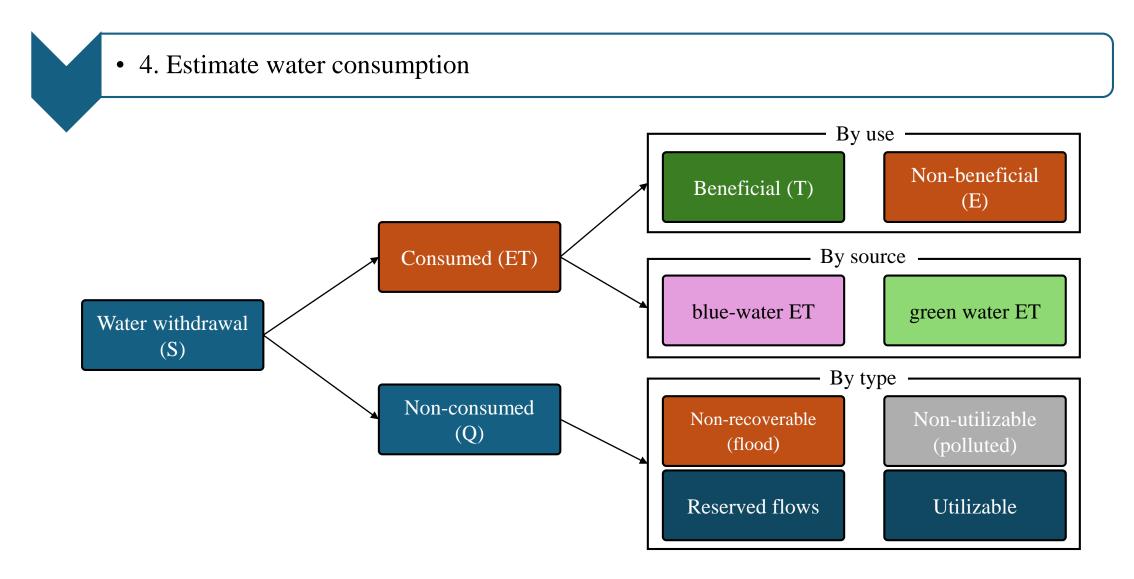
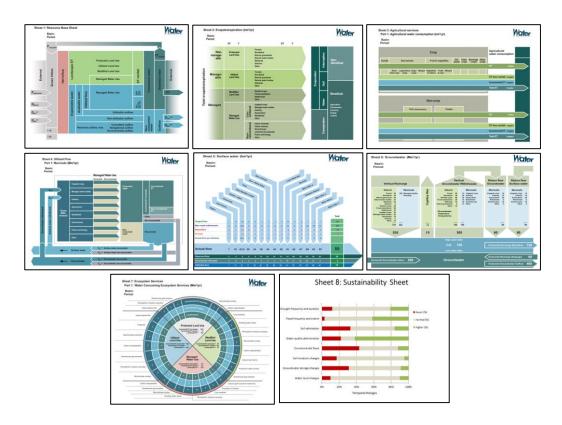
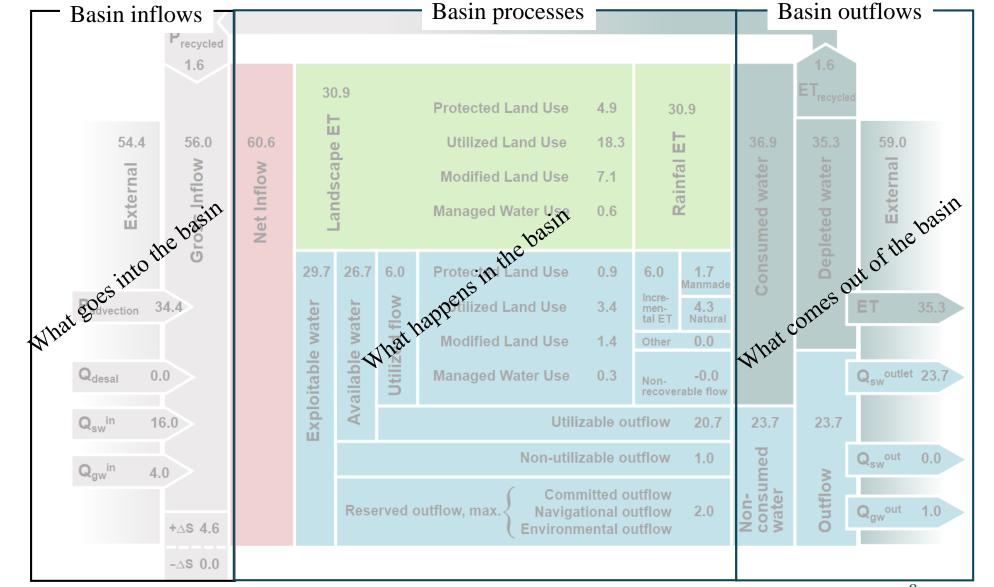

• 3. Assignment of precipitation and ET to these four land use classes

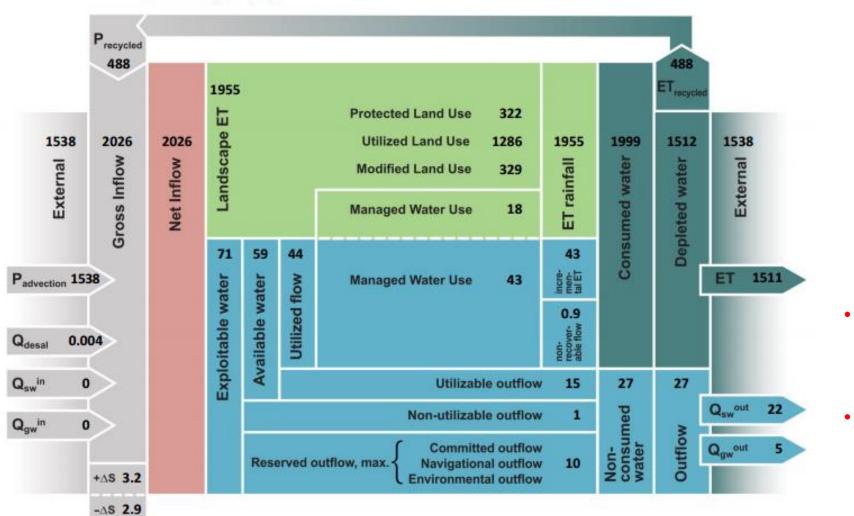
Table 2: The average $P - ET_a$ for each land cover class for the hydrological years from 2010 to 2018 in the Jordan River Basin.

	Area	Area percentage	Р	Р	ET_a	ET_a	$P - ET_a$	$P - ET_a$
Land Cover Class Description	(km ²)	(%)	(mm/year)	(mm ³ /year)	(mm/year)	(mm ³ /year)	mm/year)	(mm ³ /year)
Bare / sparse vegetation	21,586	50.0%	154	3,332	37	796	118	2,536
Grassland	7,191	16.6%	320	2,302	190	1,368	130	934
Cropland, fallow	4,686	10.8%	215	1,010	94	441	121	569
Built-up	1,092	2.5%	320	350	173	189	147	161
Cropland, rainfed	4,883	11.3%	389	1,900	379	1,850	10	50
Shrub land	1,207	2.8%	447	540	411	496	37	44
Tree cover: open, evergreen needle-leaved	1	< 0.1%	635	1	649	1	-15	<-1
Shrub or herbaceous cover, flooded	2	< 0.1%	438	1	459	1	-21	<-1
Tree cover: closed, deciduous broadleaved	<1	< 0.1%	640	<1	1,029	<1	-389	<-1
Tree cover: open, deciduous broadleaved	<1	< 0.1%	641	<1	1,072	1	-430	<-1
Tree cover: closed, evergreen needle-leaved	24	0.1%	690	17	742	18	-53	-1
Tree cover: closed, mixed type	4	< 0.1%	718	2	1,137	4	-419	-1
Tree cover: open, unknown type	558	1.3%	481	268	519	289	-38	-21
Tree cover: closed, unknown type	101	0.2%	529	53	911	92	-382	-38
Cropland, irrigated or under water management	847	2.0%	299	253	555	470	-257	-217
Water bodies	1,057	2.4%	163	172	1,258	1,329	-1,095	-1,157
Total	43,238	100.0%	-	10,201	-	7,343	-	2,848


Assignment of ET to these four land use classes is very helpful to evaluate the manageable and unmanageable water depletions (Karimi et. al., 2013b).


FAO and IHE Delft (2020)

- 1. Resource Base
- 2. Evapotranspiration
- 3. Agricultural Services
- 4. Utilized Flow
- 5. Surface Water
- 6. Groundwater
- 7. Ecosystem Services
- 8. Sustainability

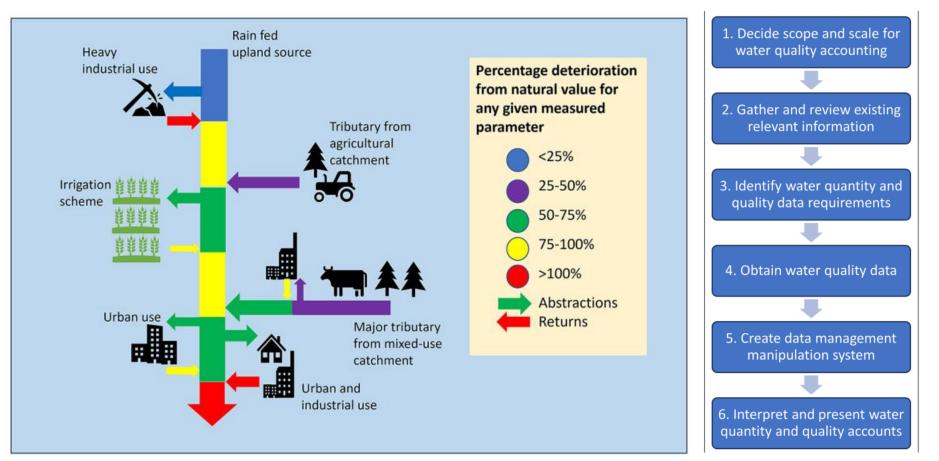


Water Accounts help the user to understand:

> 28 Source: Naga Velpuri (IWMI)

Sheet 1: Resource Base Sheet

Basin: Nile basin Period: 2005-2010 (km³ yr⁻¹)



- Quantify agricultural water demands and deficits.
- Understand the potential of water reuse.

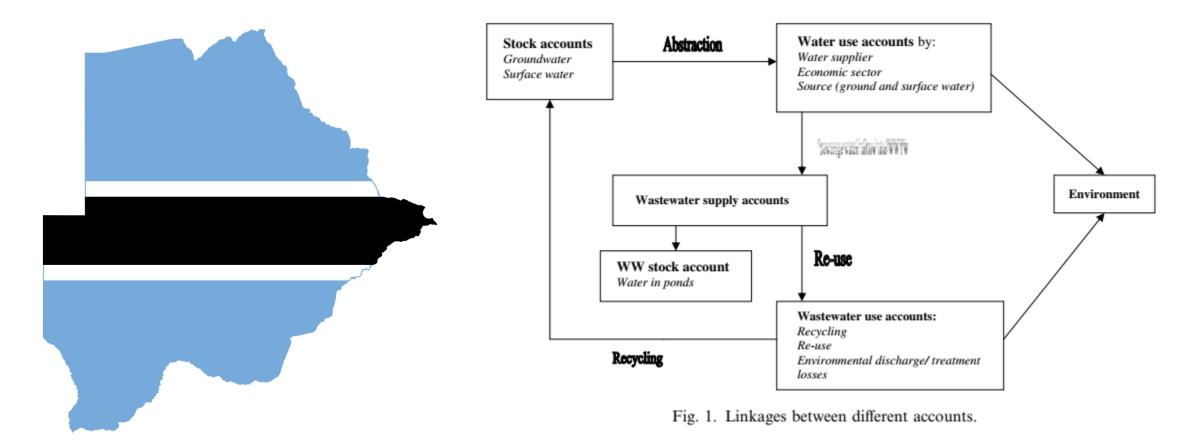
29

Linking water accounting and water quality monitoring

"Incorporating water quality monitoring into water accounting projects could have the potential to improve overall management of ambient freshwater" • 6. Develop performance indicators

Indicators	Definition
Exploitable water fraction	Exploitable water divided by the net inflow
Storage change fraction	Freshwater storage change divided by exploitable water
Available water fraction	Available water divided by exploitable water
Basin closure fraction	Utilized flow divided by available water
Reserved flow fraction	Reserved outflows divided by the total outflow
T fraction	Total T divided by the total ET
Beneficial fraction	Beneficial E and T divided by the total ET
Managed fraction	Managed ET divided by the total ET
Agri. ET fraction	Agricultural ET divided by the total ET
Irri. ET fraction	Irrigated agricultural ET divided by the agricultural ET
Land productivity crops	Crop biomass times harvest index divided by cropped area
Land productivitypastures	Pastures biomass times harvest index divided by pasture area
Water productivity crops rainfed	Rainfed crops biomass times harvest index divided by rainfed crops ET
Water productivity crops irrigated	Irrigated crops biomass times harvest index divided by Irrigated crops ET
Food Irri. Dependency	Irrigated food production divided by total food production
GW withdrawal fraction	Groundwater withdrawals divided by total withdrawals
Classical irrigation efficiency	Incremental ET of agriculture divided by withdrawals for agriculture
Recoverable fraction	Return flow divided by total withdrawals

Table 9: WA+ Sheet 1 key indicators of Jordan River Basin for the hydrological years from 2010 to 2018 based on water balance derived from WaPOR datasets.


	ET fraction	Stationarity index	Basin Closure	Available water	Managed water	Managed fraction
Year	(%)	(%)	(%)	(km ³ /year)	(km ³ /year)	(%)
2010	83.8	17.7	98.6	2.58	0.79	30.5
2011	89.6	9.2	97-9	1.70	0.77	45-4
2012	75.6	29.7	98.1	3.09	0.71	22.9
2013	69.7	40.4	97-9	4.15	0.72	17.3
2014	73.8	33.0	98.2	3.29	0.79	24.0
2015	77.1	28.9	99.3	3-35	0.90	26.7
2016	82.2	21.4	99.8	2.62	0.88	33.7
2017	83.7	19.1	99.6	2.42	0.91	37.6
2018	75-4	32.4	99.8	3-59	0.79	21.9
Average	79.0	25.8	98.8	2.98	0.81	28.9

FAO and IHE Delft (2020)

• 7. Explore alternative management scenarios

Scenario	Action	Real water saving $(\mathrm{km}^3 \mathrm{yr}^{-1})$	WA+ indicators
A Mixed actions	Reduce E rainfed land by 5% Re- duce E irrigated land by 15% Re- duce irrigated area by 0% Biomass production increase 5% Harvest in- dex increase 5% Reduce utilizable flow by 50%	12.6	Storage change fr.: -0.17 Reserved flow fr.: 0.73 <i>T</i> fr.: 0.48 Beneficial fr.: 0.53 Land productivity irri: $8,560$ Land productivity rainfed: $1,030$ Water productivity irri: 0.90 GW withdrawal fr.: 0.41
B Reduce E	Reduce E rainfed land by 15 % Re- duce E irrigated land by 35 % Re- duce irrigated area by 0 % Biomass production increase 5 % Harvest in- dex increase 10 % Reduce utilizable flow by 75 %	37.8	Storage change fr.: -0.02 Reserved flow fr.: 0.85 <i>T</i> fr.: 0.50 Beneficial fr.: 0.55 Land productivity _{irri} : 9300 Land productivity _{rainfed} : 1130 Water productivity _{irri} : 1.09 GW withdrawal fr.: 0.32
C Modify area	Reduce E rainfed land by 5% Re- duce E irrigated land by 15% Re- duce irrigated area by 15% Biomass production increase 5% Harvest in- dex increase 10% Reduce non-utilizable flow by 75%	39.4	Storage change fr.: -0.01 Reserved flow fr.: 0.85 <i>T</i> fr.: 0.45 Beneficial fr.: 0.50 Land productivity _{irri} : 9300 Land productivity _{rainfed} : $1,130$ Water productivity y_{irri} : 0.93 GW withdrawal fr.: 0.30

Case 1: Botswana

After Arntzen and Setlhogil (2007)

	User category	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
I	Agriculture	320	335	332	349	334	401	417	459	480	554	531	600
II	Mining	214	212	234	227	233	232	236	257	253	259	302	318
III	Industry	0	0	0	0	0	0	0	0	0	0	0	0
IV	Water/electricity	0	0	0	0	0	0	0	0	0	0	0	0
V	Construction	0	0	0	0	0	0	0	0	0	0	0	0
V	Services	141	146	176	167	164	168	210	237	244	256	302	302
VI	Government												
	Central govt	141	146	176	167	164	168	210	237	244	256	302	302
	Local govt	71	71	78	76	78	77	79	86	84	86	101	106
VI	Domestic Use	0	0	0	0	0	0	0	0	0	0	0	0
VII	Environment												
VII.1	Evaporation/treatment losses	6127	6232	7301	7164	7055	7480	8714	9785	10540	10 591	11724	11942
VII.2	Discharge in rivers	6880	7144	8362	8148	8060	8528	10093	11 535	12466	13932	15126	15497
	Other outflow	34	38	42	51	47	54	38	51	60	67	65	72
VIII	Total use of WW	13929	14325	16700	16348	16135	17109	19995	22 648	24372	26002	28453	29138

Table A5 Wastewater use accounts (1990–2003; 000 m³)

 Table 5

 Possible direct gross economic benefits of a multiple WW re-use example

Destination	Designated re-use amount of WW (Mm ³)	Value added/m ³ (93/94 P/m ³)	Directly associated value added of re-use (M Pula 93/94 prices)	Possible associated paid employment
Irrigated agriculture	8.0	20	160	50-500
Construction	0.2	2468	494	7000-12000
Government	1.0	271	271	20000-25000
Domestic use	5.3	0	None ^a	
Total	14.5		925	Around 40000

^a The benefits of re-use in the domestic sector depend on the destination of the saved fresh water sources, and could be substantial.

Case 2: Samut Prakan Province, Thailand AW =1,708.06 =752.36 =1,738.06 =1,738.06P = 699.71Ū MD **Annual water** F =52.65 accounts NP-B = 52.65đ UC = 985.70 Outflow = 1,015.70 C=30.00 Ð AW =2,682.53 =752.36 =2,712.53=2,712.53 P = 699.71**Annual water** WD Б Z 52.65 accounts including Treating wastewater for reuse was more đ NP-B = 52.65costly than producing municipal water. wastewater supply Nevertheless, wastewater reuse can UC = 1,930.17contribute to environmental and health

benefits.

Outflow = 1.960.17

C = 30.00

After Tingsa et. al. (2007) 35

Key message

- Notably, integrating water quality considerations offers benefits not only for water quality itself but also for overall water quantity management.
- Water Accounting Plus (WA+), with its comprehensive approach, holds significant promise in bridging this crucial linkage.
- Considering wastewater in water accounting has the potential to address prevailing water scarcity challenges in the region and mitigate the looming impacts of climate change.
- In the Gulf region, WA+ presents a pivotal opportunity to harness untapped wastewater resources, serving as a foundational framework for sustainable development.

Thank you!

Muhammad Khalifa

Regional Researcher Integrated Modelling and Assessment E-mail: m.khalifa@cgiar.org

International Water Management Institute