

A Common Energy Platform for Evaluating the Energy Efficiency of Power Generation and Desalination Plants

Kim Choon Ng

Professor, WDRC, KAUST email: Kimchoon.ng@kaust.edu.sa

Classical thermodynamics approach:

Common energy platform could discern the energy quality:

Co-generation of derived energy (electricity & heat) from CCGT plants

Methodology and Causal Relations

Underlying the processes for derived energy production y

Ng, K.C.. *et al*. A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants. *nature publication journals Clean Water* **4**, 25 (2021). https://doi.org/10.1038/s41545-021-00114-5

Corollary of Second Law of Thermodynamics

$$\frac{W_C}{(T_H - T_L)} = \frac{Q_H}{T_H} = \frac{Q_L}{T_L}$$

Types of engines	Carnot work	Common energy platform (e.g., Standard Primary energy (Q _{SPE})	Causal Relations (with 2 nd Law, $W_c = \frac{W_a}{\eta''}$)
Work driven engine (Q _H), e.g., electricity production, W _a	$W_C = QH\left(1 - \frac{T_{L,i}}{T_{H,i}}\right)$	$\left(\frac{W_a}{\eta''_{elec}}\right) = W_C = QSPE \left(1 - \frac{T_o}{T_{adia}}\right)$	$\left(\frac{Q_{SPE}}{W_a}\right) = \frac{1}{n''_{elec} \left(1 - \frac{T_o}{T_{adia}}\right)}$
Heat driven engine $(Q_a)_{,}$ e.g., MED, with heat input of MED, Q_a	$"W_C" = Q_H \left(1 - \frac{T_{L2}}{T_{H2}}\right)$	$Q_a \eta'' \left(1 - \frac{T_{L2}}{T_{H2}} \right) = Q_{SPE} \left(1 - \frac{T_o}{T_{adia}} \right)$	$\left(\frac{Q_{SPE}}{Q_a}\right) = \frac{\eta''\left(1 - \frac{T_{L2}}{T_{H2}}\right)}{\left(1 - \frac{T_o}{T_{adia}}\right)}$

 W_a and Q_a are what is measured or consumed in a process

Alternative method of assessing causal relations

Parameters at SPE:

```
T_0 = 303 K, T_{adia} = 1750 K
```

 $Cf_{elec} = 1.7328, CF_{ther} = 0.1089$

 $Cf_{elec} / CF_{ther} = 1.7328 / 0.1089$

=15.9 times

Also, the weighted 2^{nd} Law efficiency $(W_a / W^C)_{GT, ST}$ for electricity generation (GT & ST) = 0.697 or 69.7%.

And the 1st Law efiiency of CCGT plant is 57.7 %.

Fig. 4 The consumption of standard primary energy by different processes. The consumption of standard primary energy by different processes.

Comparison of EE of desalination methods

At thermodynamic limit (TL), the Gibbs exergy or minimum work =0.78 kWh _{work,TL}). The $Q_{SPE,TL} / m^3$ is =0.78/0.8265 = 0.943. All present desalination methods consumed 6 to 12 time of TL, Plausible EE improvement, dropping the Q_{SPE} consumption from $5 \rightarrow 3.5$ times of Thermodynamic Limit.

Conclusion

- Using a common primary energy platform, the absolute value of derived energy (electricity and heat transfer) are capture accurately. FOM of desalination plants of assorted types., the kWh__{SPE} /m³ of water are evaluated at this common energy platform. Pedagogically, the long-held fallacy is resolved with this approach.
- The best practical desalination process consumed > $5 \text{ kWh}_{SPE} / \text{m}^3$ whilst the thermodynamic limit is around 0.95 kWh $_{SPE} / \text{m}^3$.
- With better thermodynamic synergy amongst processes, a plausible target of < 3.5 kWh__{SPE}/m³ can be reached in near future. Target can be attained by better hybrid membranes or thermally-driven cycles