

مركز المواد المتقدمة CENTER FOR ADVANCED MATERIALS

QU Vision of Water R & D Priorities for localization of Technology and Knowledge Sharing

Prof. Syed Javaid Zaidi UNESCO Chair in Water Technology, Qatar University s.zaidi@qu.edu.qa

Introduction

- Water Security as a Grand Challenge in Qatar National Vision 2030 and Qatar National Research Strategy: Promoting integrated water resources management
- QU Research pillar with emphasis on water and water-related studies
- Research Focus
 - Water treatment technologies (desalination, wastewater treatment)
 - Water quality monitoring and environmental assessment
 - Membrane processes and advanced materials for water applications
- Collaborations with international partners on water challenges
- Development of innovative technologies for Qatar's arid climate
- Educational Outreach: Dedicated to building expertise in water science and technology.

Qatar University's Water Research Initiatives

Water Research Unit and Water Technology Unit (CAM):

Advanced research equipment and facilities Innovative water treatment processes and systems Membrane technology development and applications

Pilot-scale testing and process optimization

unesco

UNESCO Chair on Water Reuse:

International collaborations and knowledge exchange

Student and researcher mobility programs Advanced research on water reuse and recycling Addressing water challenges in the MENA region Capacity-building and knowledge dissemination

Emerging Technology and Future vision

Forward Osmosis Seawater Pretreatment for Thermal and RO Desalination Plants

Nanofiltration/RO Pressure Retarded System

Electrodialysis-based and Reverse ED Hybrid Systems

Membrane Distillation system

Brine Mineral Mining

Research Advancements at Qatar

University

- Qatar University (QU): MD
 - Explored membrane distillation (MD) and energy parameters.
 - Examined the impact of membrane properties, feed water properties, mass transfer, heat transfer, and system parameters on energy parameters.
- Qatar University (QU): PRO
 - Explored membrane modification for pressure retarded osmosis (PRO).
 - Investigated various nanomaterials, including zeolite, graphene oxide, and carbon nanotubes, for enhancing PRO performance.
 - Focused on maximizing power generation from salinity gradient resources.

Research Advancements at Qatar

University

Qatar University (QU) Research - FO-Thermal Technologies Hybrid

Exploring Forward Osmosis (FO) as a Pretreatment for Thermal Seawater Desalination Plants.

- Advantages of FO:
 - Requires minimal energy due to osmotic pressure gradient.
 - Reversible fouling with less pretreatment requirements

Qatar-Based Research:

- FO demonstrated success in pretreating MSF plant's feed solution with a maximum membrane flux of 22.3 L/m2h.
- Combining FO with MSF increased the plant's production by 20% and reduced chemical costs.
- FO can allow safe operation of MSF at higher temperatures, resulting in increased unit capacity.

US20230271141A1 United States Download PDF Q Find Prior Art Similar Inventor: Syed Javaid ZAIDI, Hammadur Rahman SIDDIQUI, Haleema SALEEM, Nada Mahmoud ABOUNAHIA, Levent

Trabzon, Ali Kilic

Current Assignee : Qatar University

Topic : Ultrafast water flux through hot-pressed solution blown spun nanofiber-based thin film composite membranes for forward osmosis

Future Water Research Initiatives at Qatar University

Brine Management Initiative

• Addressing the challenge of brine disposal from desalination

plants

- Exploring brine treatment and valorization technologies
- Developing sustainable brine management strategies
- Developing attitude and habbit among local farms

Development of Nanostructured-Based Membranes:

- Nanotechnology for advanced membrane design
- Enhanced membrane properties and performance
- Applications in water treatment and desalination

Future Water Research Initiatives at Qatar University

New Membrane Development Using Nanomaterials from **Biowaste**

- Utilizing biowaste as a source of nanomaterials
- Developing high-performance and eco-friendly membranes
- Improving membrane efficiency and sustainability

Extract was centrifuged

Filtered

Cellulose from date palm leaves used for wastewater treatment.

Cellulose extraction from date palm leaves

Future Water Research Initiatives at Qatar University

New Membrane Development Using Nanomaterials from Biowaste

- Utilizing biowaste as a source of nanomaterials
- Developing high-performance and eco-friendly membranes
- Improving membrane efficiency and sustainability

Leaves

Grinding

Powder Alkali Treatment

Bleaching

Schematic representation of cellulose extraction

Membrane modification for treating produced water

Synthetic PW

Cellulose nanocrystals (CNC)

Conclusion and Recommendations

- Water research crucial for sustainability in Qatar/GCC
- QU leads through specialized centers/initiatives
- Key areas: treatment, desalination, quality, water-energy nexus
- Innovative technologies for local climate/scarcity
- International collaborations foster impactful research
- Training and capacity building for skilled workforce
- Future initiatives: brine management, biowaste membranes, nanostructures
- Supports Qatar's vision for water security and sustainability

THANK YOU

For Further Information and Collaboration kindly contact Syed Javaid Zaidi <u>szaidi@qu.edu.qa</u>

UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials, Qatar University Doha, Qatar